• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

HoME: a Household Multimodal Environment
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
HoME: a Household Multimodal Environment
Author(s) :
Brodeur, Simon [Auteur]
Perez, Ethan [Auteur]
Rice University [Houston]
Anand, Ankesh [Auteur]
Golemo, Florian [Auteur]
Flowing Epigenetic Robots and Systems [Flowers]
Celotti, Luca [Auteur]
Strub, Florian [Auteur]
Sequential Learning [SEQUEL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Rouat, Jean [Auteur]
Larochelle, Hugo [Auteur]
Google Brain
Courville, Aaron [Auteur]
Conference title :
NIPS 2017's Visually-Grounded Interaction and Language Workshop
City :
Long Beach
Country :
Etats-Unis d'Amérique
Start date of the conference :
2017-12-08
HAL domain(s) :
Informatique [cs]/Réseau de neurones [cs.NE]
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
Informatique [cs]/Recherche opérationnelle [cs.RO]
Informatique [cs]/Son [cs.SD]
English abstract : [en]
We introduce HoME: a Household Multimodal Environment for artificial agents to learn from vision, audio, semantics, physics, and interaction with objects and other agents, all within a realistic context. HoME integrates ...
Show more >
We introduce HoME: a Household Multimodal Environment for artificial agents to learn from vision, audio, semantics, physics, and interaction with objects and other agents, all within a realistic context. HoME integrates over 45,000 diverse 3D house layouts based on the SUNCG dataset, a scale which may facilitate learning, generalization, and transfer. HoME is an open-source, OpenAI Gym-compatible platform extensible to tasks in reinforcement learning, language grounding, sound-based navigation, robotics, multi-agent learning, and more. We hope HoME better enables artificial agents to learn as humans do: in an interactive, multimodal, and richly contextualized setting.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • http://arxiv.org/pdf/1711.11017
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017