Delexicalized Word Embeddings for Cross-lingual ...
Type de document :
Communication dans un congrès avec actes
DOI :
Titre :
Delexicalized Word Embeddings for Cross-lingual Dependency Parsing
Auteur(s) :
Dehouck, Mathieu [Auteur]
Machine Learning in Information Networks [MAGNET]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Denis, Pascal [Auteur]
Machine Learning in Information Networks [MAGNET]
Machine Learning in Information Networks [MAGNET]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Denis, Pascal [Auteur]
Machine Learning in Information Networks [MAGNET]
Titre de la manifestation scientifique :
EACL
Ville :
Valencia
Pays :
Espagne
Date de début de la manifestation scientifique :
2017-04-03
Titre de l’ouvrage :
EACL
Titre de la revue :
EACL 2017
Date de publication :
2017-04
Mot(s)-clé(s) en anglais :
Word Embedding
Dependency Parsing
Cross-Lingual
Representation
Learning
Dependency Parsing
Cross-Lingual
Representation
Learning
Discipline(s) HAL :
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Informatique et langage [cs.CL]
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Informatique et langage [cs.CL]
Informatique [cs]/Apprentissage [cs.LG]
Résumé en anglais : [en]
This paper presents a new approach to the problem of cross-lingual dependency parsing, aiming at leveraging training data from different source languages to learn a parser in a target language. Specifically , this approach ...
Lire la suite >This paper presents a new approach to the problem of cross-lingual dependency parsing, aiming at leveraging training data from different source languages to learn a parser in a target language. Specifically , this approach first constructs word vector representations that exploit structural (i.e., dependency-based) contexts but only considering the morpho-syntactic information associated with each word and its contexts. These delexicalized word em-beddings, which can be trained on any set of languages and capture features shared across languages, are then used in combination with standard language-specific features to train a lexicalized parser in the target language. We evaluate our approach through experiments on a set of eight different languages that are part the Universal Dependencies Project. Our main results show that using such delexicalized embeddings, either trained in a monolin-gual or multilingual fashion, achieves significant improvements over monolingual baselines.Lire moins >
Lire la suite >This paper presents a new approach to the problem of cross-lingual dependency parsing, aiming at leveraging training data from different source languages to learn a parser in a target language. Specifically , this approach first constructs word vector representations that exploit structural (i.e., dependency-based) contexts but only considering the morpho-syntactic information associated with each word and its contexts. These delexicalized word em-beddings, which can be trained on any set of languages and capture features shared across languages, are then used in combination with standard language-specific features to train a lexicalized parser in the target language. We evaluate our approach through experiments on a set of eight different languages that are part the Universal Dependencies Project. Our main results show that using such delexicalized embeddings, either trained in a monolin-gual or multilingual fashion, achieves significant improvements over monolingual baselines.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-01590639/document
- Accès libre
- Accéder au document
- https://doi.org/10.18653/v1/e17-1023
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01590639/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01590639/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- E17-1023.pdf
- Accès libre
- Accéder au document
- e17-1023
- Accès libre
- Accéder au document