Mixed Deterministic and Random Optimal ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Mixed Deterministic and Random Optimal Control of Linear Stochastic Systems with Quadratic Costs
Auteur(s) :
Hu, Ying [Auteur]
Institut de Recherche Mathématique de Rennes [IRMAR]
Tang, Shanjian [Auteur correspondant]
Institut de Recherche Mathématique de Rennes [IRMAR]
Tang, Shanjian [Auteur correspondant]
Titre de la revue :
Probability, Uncertainty and Quantitative Risk
Éditeur :
American Institute of Mathematical Sciences
Date de publication :
2019
ISSN :
2095-9672
Mot(s)-clé(s) en anglais :
Stochastic LQ
differential/algebraic Riccati equation
mixed deterministic and random control
singular LQ
infinite-horizon
differential/algebraic Riccati equation
mixed deterministic and random control
singular LQ
infinite-horizon
Discipline(s) HAL :
Mathématiques [math]/Optimisation et contrôle [math.OC]
Résumé en anglais : [en]
In this paper, we consider the mixed optimal control of a linear stochastic system with a quadratic cost functional, with two controllers—one can choose only deterministic time functions, called the deterministic controller, ...
Lire la suite >In this paper, we consider the mixed optimal control of a linear stochastic system with a quadratic cost functional, with two controllers—one can choose only deterministic time functions, called the deterministic controller, while the other can choose adapted random processes, called the random controller. The optimal control is shown to exist under suitable assumptions. The optimal control is characterized via a system of fully coupled forward-backward stochastic differential equations (FB-SDEs) of mean-field type. We solve the FBSDEs via solutions of two (but decoupled) Riccati equations, and give the respective optimal feedback law for both determinis-tic and random controllers, using solutions of both Riccati equations. The optimal state satisfies a linear stochastic differential equation (SDE) of mean-field type. Both the singular and infinite time-horizonal cases are also addressed.Lire moins >
Lire la suite >In this paper, we consider the mixed optimal control of a linear stochastic system with a quadratic cost functional, with two controllers—one can choose only deterministic time functions, called the deterministic controller, while the other can choose adapted random processes, called the random controller. The optimal control is shown to exist under suitable assumptions. The optimal control is characterized via a system of fully coupled forward-backward stochastic differential equations (FB-SDEs) of mean-field type. We solve the FBSDEs via solutions of two (but decoupled) Riccati equations, and give the respective optimal feedback law for both determinis-tic and random controllers, using solutions of both Riccati equations. The optimal state satisfies a linear stochastic differential equation (SDE) of mean-field type. Both the singular and infinite time-horizonal cases are also addressed.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-01576070/document
- Accès libre
- Accéder au document
- http://arxiv.org/pdf/1708.06547
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01576070/document
- Accès libre
- Accéder au document
- Mixed%20deterministic%20and%20stochastic%20optimal%20control%20of%20linear%20stochastic%20systems%20with%20quadratic%20costs.pdf
- Accès libre
- Accéder au document
- 1708.06547
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Mixed%20deterministic%20and%20stochastic%20optimal%20control%20of%20linear%20stochastic%20systems%20with%20quadratic%20costs.pdf
- Accès libre
- Accéder au document