• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Online learning and transfer for user ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Title :
Online learning and transfer for user adaptation in dialogue systems
Author(s) :
Carrara, Nicolas [Auteur]
Sequential Learning [SEQUEL]
Orange Labs [Lannion]
Laroche, Romain [Auteur]
Maluuba
Pietquin, Olivier [Auteur] refId
Sequential Learning [SEQUEL]
Conference title :
SIGDIAL/SEMDIAL joint special session on negotiation dialog 2017
City :
Saarbrücken
Country :
Allemagne
Start date of the conference :
2017-08-15
HAL domain(s) :
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Informatique et langage [cs.CL]
English abstract : [en]
We address the problem of user adaptation in Spoken Dialogue Systems. The goal is to quickly adapt online to a new user given a large amount of dialogues collected with other users. Previous works using Transfer for ...
Show more >
We address the problem of user adaptation in Spoken Dialogue Systems. The goal is to quickly adapt online to a new user given a large amount of dialogues collected with other users. Previous works using Transfer for Reinforcement Learning tackled this problem when the number of source users remains limited. In this paper, we overcome this constraint by clustering the source users: each user cluster, represented by its centroid, is used as a potential source in the state-of-the-art Transfer Reinforcement Learning algorithm. Our benchmark compares several clustering approaches , including one based on a novel metric. All experiments are led on a negotiation dialogue task, and their results show significant improvements over baselines.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01557775/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01557775/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01557775/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017