Transfer Reinforcement Learning with Shared ...
Type de document :
Communication dans un congrès avec actes
Titre :
Transfer Reinforcement Learning with Shared Dynamics
Auteur(s) :
Laroche, Romain [Auteur]
Orange Labs [Issy les Moulineaux]
Barlier, Merwan [Auteur]
Sequential Learning [SEQUEL]
Orange Labs [Issy les Moulineaux]
Orange Labs [Issy les Moulineaux]
Barlier, Merwan [Auteur]
Sequential Learning [SEQUEL]
Orange Labs [Issy les Moulineaux]
Titre de la manifestation scientifique :
AAAI-17 - Thirty-First AAAI Conference on Artificial Intelligence
Ville :
San Francisco
Pays :
Etats-Unis d'Amérique
Date de début de la manifestation scientifique :
2017-02-04
Date de publication :
2017-02-13
Discipline(s) HAL :
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Apprentissage [cs.LG]
Résumé en anglais : [en]
This article addresses a particular Transfer Reinforcement Learning (RL) problem: when dynamics do not change from one task to another, and only the reward function does. Our method relies on two ideas, the first one is ...
Lire la suite >This article addresses a particular Transfer Reinforcement Learning (RL) problem: when dynamics do not change from one task to another, and only the reward function does. Our method relies on two ideas, the first one is that transition samples obtained from a task can be reused to learn on any other task: an immediate reward estimator is learnt in a supervised fashion and for each sample, the reward entry is changed by its reward estimate. The second idea consists in adopting the optimism in the face of uncertainty principle and to use upper bound reward estimates. Our method is tested on a navigation task, under four Transfer RL experimental settings: with a known reward function, with strong and weak expert knowledge on the reward function, and with a completely unknown reward function. It is also evaluated in a Multi-Task RL experiment and compared with the state-of-the-art algorithms. Results reveal that this method constitutes a major improvement for transfer/multi-task problems that share dynamics.Lire moins >
Lire la suite >This article addresses a particular Transfer Reinforcement Learning (RL) problem: when dynamics do not change from one task to another, and only the reward function does. Our method relies on two ideas, the first one is that transition samples obtained from a task can be reused to learn on any other task: an immediate reward estimator is learnt in a supervised fashion and for each sample, the reward entry is changed by its reward estimate. The second idea consists in adopting the optimism in the face of uncertainty principle and to use upper bound reward estimates. Our method is tested on a navigation task, under four Transfer RL experimental settings: with a known reward function, with strong and weak expert knowledge on the reward function, and with a completely unknown reward function. It is also evaluated in a Multi-Task RL experiment and compared with the state-of-the-art algorithms. Results reveal that this method constitutes a major improvement for transfer/multi-task problems that share dynamics.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-01548649/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01548649/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01548649/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- aaai-multi-task%281%29.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- aaai-multi-task%281%29.pdf
- Accès libre
- Accéder au document