Novel Generative Model for Facial Expressions ...
Type de document :
Communication dans un congrès avec actes
Titre :
Novel Generative Model for Facial Expressions Based on Statistical Shape Analysis of Landmarks Trajectories
Auteur(s) :
Desrosiers, Paul Audain [Auteur]
Modeling and Analysis of Static and Dynamic Shapes [3D-SAM]
Daoudi, Mohamed [Auteur]
Modeling and Analysis of Static and Dynamic Shapes [3D-SAM]
Devanne, Maxime [Auteur]
Modeling and Analysis of Static and Dynamic Shapes [3D-SAM]
Modeling and Analysis of Static and Dynamic Shapes [3D-SAM]
Daoudi, Mohamed [Auteur]

Modeling and Analysis of Static and Dynamic Shapes [3D-SAM]
Devanne, Maxime [Auteur]
Modeling and Analysis of Static and Dynamic Shapes [3D-SAM]
Éditeur(s) ou directeur(s) scientifique(s) :
Eduardo Bayro-Corrochano
Gabriella Sanniti di Baja
Gérard Medioni
Gabriella Sanniti di Baja
Gérard Medioni
Titre de la manifestation scientifique :
23rd International Conference on Pattern Recognition, ICPR 2016
Organisateur(s) de la manifestation scientifique :
International Association for Pattern Recognition
Ville :
Cancún
Pays :
Mexique
Date de début de la manifestation scientifique :
2016-12-04
Éditeur :
IEEE
Date de publication :
2016
Discipline(s) HAL :
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
Résumé en anglais : [en]
We propose a novel geometric framework for analyzing spontaneous facial expressions, with the specific goal of comparing, matching, and averaging the shapes of landmarks trajectories. Here we represent facial expressions ...
Lire la suite >We propose a novel geometric framework for analyzing spontaneous facial expressions, with the specific goal of comparing, matching, and averaging the shapes of landmarks trajectories. Here we represent facial expressions by the motion of the landmarks across the time. The trajectories are represented by curves. We use elastic shape analysis of these curves to develop a Riemannian framework for analyzing shapes of these trajectories. In terms of empirical evaluation, our results on two databases: UvA-NEMO and Cohn-Kanade CK+ are very promising. From a theoretical perspective, this framework allows formal statistical inferences, such as generation of facial expressions.Lire moins >
Lire la suite >We propose a novel geometric framework for analyzing spontaneous facial expressions, with the specific goal of comparing, matching, and averaging the shapes of landmarks trajectories. Here we represent facial expressions by the motion of the landmarks across the time. The trajectories are represented by curves. We use elastic shape analysis of these curves to develop a Riemannian framework for analyzing shapes of these trajectories. In terms of empirical evaluation, our results on two databases: UvA-NEMO and Cohn-Kanade CK+ are very promising. From a theoretical perspective, this framework allows formal statistical inferences, such as generation of facial expressions.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-01521379/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01521379/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01521379/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- papiericpr2016-6.pdf
- Accès libre
- Accéder au document
- papiericpr2016-6.pdf
- Accès libre
- Accéder au document