GenPack: A Generational Scheduler for Cloud ...
Type de document :
Communication dans un congrès avec actes
Titre :
GenPack: A Generational Scheduler for Cloud Data Centers
Auteur(s) :
Havet, Aurélien [Auteur]
Institut d'Informatique [Neuchâtel] [IIUN]
Schiavoni, Valerio [Auteur]
Institut d'Informatique [Neuchâtel] [IIUN]
Felber, Pascal [Auteur]
Institut d'Informatique [Neuchâtel] [IIUN]
Colmant, Maxime [Auteur]
Agence de l'Environnement et de la Maîtrise de l'Énergie [ADEME]
Université de Lille, Sciences et Technologies
Self-adaptation for distributed services and large software systems [SPIRALS]
Rouvoy, Romain [Auteur]
Université de Lille, Sciences et Technologies
Self-adaptation for distributed services and large software systems [SPIRALS]
Institut universitaire de France [IUF]
Fetzer, Chistof [Auteur]
Technische Universität Dresden = Dresden University of Technology [TU Dresden]
Institut d'Informatique [Neuchâtel] [IIUN]
Schiavoni, Valerio [Auteur]
Institut d'Informatique [Neuchâtel] [IIUN]
Felber, Pascal [Auteur]
Institut d'Informatique [Neuchâtel] [IIUN]
Colmant, Maxime [Auteur]
Agence de l'Environnement et de la Maîtrise de l'Énergie [ADEME]
Université de Lille, Sciences et Technologies
Self-adaptation for distributed services and large software systems [SPIRALS]
Rouvoy, Romain [Auteur]

Université de Lille, Sciences et Technologies
Self-adaptation for distributed services and large software systems [SPIRALS]
Institut universitaire de France [IUF]
Fetzer, Chistof [Auteur]
Technische Universität Dresden = Dresden University of Technology [TU Dresden]
Éditeur(s) ou directeur(s) scientifique(s) :
Indranil Gupta
Jiangchuan Liu
Jiangchuan Liu
Titre de la manifestation scientifique :
5th IEEE International Conference on Cloud Engineering (IC2E)
Ville :
Vancouver
Pays :
Canada
Date de début de la manifestation scientifique :
2017-04-04
Titre de la revue :
Proceedings of the 5th IEEE International Conference on Cloud Engineering (IC2E)
Éditeur :
IEEE
Date de publication :
2017-04-04
Mot(s)-clé(s) en anglais :
virtual machine
scheduler
docker
container
profiling
energy
cloud
data center
scheduler
docker
container
profiling
energy
cloud
data center
Discipline(s) HAL :
Informatique [cs]/Génie logiciel [cs.SE]
Informatique [cs]/Web
Informatique [cs]/Système d'exploitation [cs.OS]
Informatique [cs]/Web
Informatique [cs]/Système d'exploitation [cs.OS]
Résumé en anglais : [en]
Cloud data centers largely rely on virtualization to provision resources and host services across their infrastructure. The scheduling problem has been widely studied and is well understood when the resource requirements ...
Lire la suite >Cloud data centers largely rely on virtualization to provision resources and host services across their infrastructure. The scheduling problem has been widely studied and is well understood when the resource requirements and the expected lifetime of services are known beforehand. In contrast, when workloads are not known in advance, effective scheduling of services, and more generally system containers, becomes much more complex. In this paper, we propose GENPACK, a framework for system containers scheduling in cloud data centers that leverages principles from generational garbage collection (GC). It combines runtime monitoring of system containers to learn their requirements and properties, and a scheduler that manages different generations of servers. The population of these generations may vary over time depending on the global load, hence they are subject to being shut down when idle to save energy. We implemented GENPACK and tested it in a dedicated data center, showing that it can be up to 23% more energy-efficient that SWARM’s built-in scheduling policies on a real-world trace.Lire moins >
Lire la suite >Cloud data centers largely rely on virtualization to provision resources and host services across their infrastructure. The scheduling problem has been widely studied and is well understood when the resource requirements and the expected lifetime of services are known beforehand. In contrast, when workloads are not known in advance, effective scheduling of services, and more generally system containers, becomes much more complex. In this paper, we propose GENPACK, a framework for system containers scheduling in cloud data centers that leverages principles from generational garbage collection (GC). It combines runtime monitoring of system containers to learn their requirements and properties, and a scheduler that manages different generations of servers. The population of these generations may vary over time depending on the global load, hence they are subject to being shut down when idle to save energy. We implemented GENPACK and tested it in a dedicated data center, showing that it can be up to 23% more energy-efficient that SWARM’s built-in scheduling policies on a real-world trace.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-01403486/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01403486/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01403486/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- haver-ic2e-17.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- haver-ic2e-17.pdf
- Accès libre
- Accéder au document