• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Troll-Trust Model for Edge Sign ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Rapport de recherche
Title :
On the Troll-Trust Model for Edge Sign Prediction in Social Networks
Author(s) :
Le Falher, Géraud [Auteur]
Machine Learning in Information Networks [MAGNET]
Cesa-Bianchi, Nicolò [Auteur]
Dipartimento di Scienze dell'Informazione [Milano]
Gentile, Claudio [Auteur]
Universitá degli Studi dell’Insubria = University of Insubria [Varese] [Uninsubria]
Vitale, Fabio [Auteur]
Machine Learning in Information Networks [MAGNET]
Aalto University School of Science and Technology [Aalto, Finland]
Institution :
INRIA Lille
Publication date :
2016
HAL domain(s) :
Informatique [cs]/Intelligence artificielle [cs.AI]
English abstract : [en]
In the problem of edge sign prediction, we are given a directed graph (representing a social network), and our task is to predict the binary labels of the edges (i.e., the positive or negative nature of the social ...
Show more >
In the problem of edge sign prediction, we are given a directed graph (representing a social network), and our task is to predict the binary labels of the edges (i.e., the positive or negative nature of the social relationships). Many successful heuristics for this problem are based on the troll-trust features, estimating at each node the fraction of outgoing and incoming positive/negative edges. We show that these heuristics can be understood, and rigorously analyzed, as approximators to the Bayes optimal classifier for a simple proba-bilistic model of the edge labels. We then show that the maximum likelihood estimator for this model approximately corresponds to the predictions of a Label Propagation algorithm run on a transformed version of the original social graph. Extensive experiments on a number of real-world datasets show that this algorithm is competitive against state-of-the-art classifiers in terms of both accuracy and scalability. Finally, we show that troll-trust features can also be used to derive online learning algorithms which have theoretical guarantees even when edges are adversarially labeled.Show less >
Language :
Anglais
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-01425137/document
  • Open access
  • Access the document
Thumbnail
  • http://arxiv.org/pdf/1606.00182
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01425137/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01425137/document
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • paper.pdf
  • Open access
  • Access the document
Thumbnail
  • 1606.00182
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • paper.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017