β-Robustness approach for fuzzy multi-objective ...
Document type :
Communication dans un congrès avec actes
Title :
β-Robustness approach for fuzzy multi-objective problems
Author(s) :
Bahri, Oumayma [Auteur]
Laboratoire de Recherche Opérationnelle de Décision et de Contrôle de Processus [LARODEC]
Talbi, El-Ghazali [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Benamor, Nahla [Auteur]
Laboratoire de Recherche Opérationnelle de Décision et de Contrôle de Processus [LARODEC]
Laboratoire de Recherche Opérationnelle de Décision et de Contrôle de Processus [LARODEC]
Talbi, El-Ghazali [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Benamor, Nahla [Auteur]
Laboratoire de Recherche Opérationnelle de Décision et de Contrôle de Processus [LARODEC]
Conference title :
IPMU‘2016 - 16th Int. Conference On Information Processing and Management on Uncertainty in Knowledge-based Systems
City :
Eindhoeven
Country :
Pays-Bas
Start date of the conference :
2016
HAL domain(s) :
Informatique [cs]/Intelligence artificielle [cs.AI]
English abstract : [en]
The paper addresses the robustness of multi-objective optimization problems with fuzzy data, expressed via triangular fuzzy numbers. To this end, we introduced a new robustness approach able to deal with fuzziness in the ...
Show more >The paper addresses the robustness of multi-objective optimization problems with fuzzy data, expressed via triangular fuzzy numbers. To this end, we introduced a new robustness approach able to deal with fuzziness in the multi-objective context. The proposed approach is composed of two main contributions: First, new concepts of β-robustness are proposed to analyze fuzziness propagation to the multiple objectives. Second, an extension of our previously proposed evolutionary algorithms is suggested for integrating robustness. These proposals are illustrated on a multi-objective vehicle routing problem with fuzzy customer demands. The experimental results on different instances show the efficiency of the proposed approach.Show less >
Show more >The paper addresses the robustness of multi-objective optimization problems with fuzzy data, expressed via triangular fuzzy numbers. To this end, we introduced a new robustness approach able to deal with fuzziness in the multi-objective context. The proposed approach is composed of two main contributions: First, new concepts of β-robustness are proposed to analyze fuzziness propagation to the multiple objectives. Second, an extension of our previously proposed evolutionary algorithms is suggested for integrating robustness. These proposals are illustrated on a multi-objective vehicle routing problem with fuzzy customer demands. The experimental results on different instances show the efficiency of the proposed approach.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :