On the convex piecewise linear unsplittable ...
Type de document :
Communication dans un congrès avec actes
Titre :
On the convex piecewise linear unsplittable multicommodity flow problem
Auteur(s) :
Fortz, Bernard [Auteur]
Graphes et Optimisation Mathématique [Bruxelles] [GOM]
Integrated Optimization with Complex Structure [INOCS]
Gouveia, Luis [Auteur]
Universidade de Lisboa = University of Lisbon = Université de Lisbonne [ULISBOA]
Joyce-Moniz, Martim [Auteur]
Université libre de Bruxelles [ULB]
Graphes et Optimisation Mathématique [Bruxelles] [GOM]
Integrated Optimization with Complex Structure [INOCS]
Gouveia, Luis [Auteur]
Universidade de Lisboa = University of Lisbon = Université de Lisbonne [ULISBOA]
Joyce-Moniz, Martim [Auteur]
Université libre de Bruxelles [ULB]
Titre de la manifestation scientifique :
2016 12th International Conference on the Design of Reliable Communication Networks (DRCN)
Ville :
Paris
Pays :
France
Date de début de la manifestation scientifique :
2016-03-15
Date de publication :
2016
Discipline(s) HAL :
Computer Science [cs]/Operations Research [math.OC]
Résumé en anglais : [en]
We consider the problem of finding the cheapest routing for a set of commodities over a directed graph, such that: i) each commodity flows through a single path, ii) the routing cost of each arc is given by a convex piecewise ...
Lire la suite >We consider the problem of finding the cheapest routing for a set of commodities over a directed graph, such that: i) each commodity flows through a single path, ii) the routing cost of each arc is given by a convex piecewise linear function of the load (i.e. the total flow) traversing it. We propose a new mixed-integer programming formulation for this problem. This formulation gives a complete description of the associated polyhedron for the single commodity case, and produces very tight linear programming bounds for the multi-commodity case.Lire moins >
Lire la suite >We consider the problem of finding the cheapest routing for a set of commodities over a directed graph, such that: i) each commodity flows through a single path, ii) the routing cost of each arc is given by a convex piecewise linear function of the load (i.e. the total flow) traversing it. We propose a new mixed-integer programming formulation for this problem. This formulation gives a complete description of the associated polyhedron for the single commodity case, and produces very tight linear programming bounds for the multi-commodity case.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- pumf_short.pdf
- Accès libre
- Accéder au document