Compromis exploration-exploitation pour ...
Type de document :
Communication dans un congrès avec actes
Titre :
Compromis exploration-exploitation pour système de recommandation à grande échelle
Auteur(s) :
Guillou, Frédéric [Auteur]
Sequential Learning [SEQUEL]
Gaudel, Romaric [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Sequential Learning [SEQUEL]
Preux, Philippe [Auteur]
Sequential Learning [SEQUEL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Sequential Learning [SEQUEL]
Gaudel, Romaric [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Sequential Learning [SEQUEL]
Preux, Philippe [Auteur]

Sequential Learning [SEQUEL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Titre de la manifestation scientifique :
Conférence francophone sur l'Apprentissage Automatique (CAp'16)
Ville :
Marseille
Pays :
France
Date de début de la manifestation scientifique :
2016-07-05
Discipline(s) HAL :
Informatique [cs]/Apprentissage [cs.LG]
Résumé en anglais : [en]
Les systèmes de recommandation recommandent à des utilisateurs un ou des produits qui pourraient les intéresser. La recommandation se fonde sur les retours des utilisateurs par le passé, lors des précédentes recommandations. ...
Lire la suite >Les systèmes de recommandation recommandent à des utilisateurs un ou des produits qui pourraient les intéresser. La recommandation se fonde sur les retours des utilisateurs par le passé, lors des précédentes recommandations. La recommandation est donc un problème séquentiel et le système de recommandation recommande (i) pour obtenir une bonne récompense, mais aussi (ii) pour mieux cerné l'utilisateur/les produits et ainsi obtenir de meilleures récompenses par la suite. Quelques approches récentes ciblent ce double objectif mais elles sont trop gourmandes en temps de calcul pour s'appliquer à certaines applications de la vie réelle. Dans cet article, nous présentons un système de recommandation fondé sur la factorisation de matrice et les bandits manchots. Plusieurs expériences sur de grandes base de données montrent que l'approche proposée fournit de bonnes recommendations en moins d'une milli-seconde par recommandation.Lire moins >
Lire la suite >Les systèmes de recommandation recommandent à des utilisateurs un ou des produits qui pourraient les intéresser. La recommandation se fonde sur les retours des utilisateurs par le passé, lors des précédentes recommandations. La recommandation est donc un problème séquentiel et le système de recommandation recommande (i) pour obtenir une bonne récompense, mais aussi (ii) pour mieux cerné l'utilisateur/les produits et ainsi obtenir de meilleures récompenses par la suite. Quelques approches récentes ciblent ce double objectif mais elles sont trop gourmandes en temps de calcul pour s'appliquer à certaines applications de la vie réelle. Dans cet article, nous présentons un système de recommandation fondé sur la factorisation de matrice et les bandits manchots. Plusieurs expériences sur de grandes base de données montrent que l'approche proposée fournit de bonnes recommendations en moins d'une milli-seconde par recommandation.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :