• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning variable importance to guide ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
Learning variable importance to guide recombination
Author(s) :
Sagawa, Miyako [Auteur]
Faculty of Engineering [Nagano]
Aguirre, Hernan [Auteur]
Faculty of Engineering [Nagano]
Daolio, Fabio [Auteur]
Faculty of Engineering [Nagano]
Liefooghe, Arnaud [Auteur] refId
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Derbel, Bilel [Auteur] refId
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Verel, Sébastien [Auteur]
Laboratoire d'Informatique Signal et Image de la Côte d'Opale [LISIC]
Tanaka, Kiyoshi [Auteur]
Faculty of Engineering [Nagano]
Conference title :
IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making (IEEE MCDM 2016)
City :
Athens
Country :
Grèce
Start date of the conference :
2016
Book title :
IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making (IEEE MCDM 2016)
Publication date :
2016
HAL domain(s) :
Informatique [cs]/Recherche opérationnelle [cs.RO]
Mathématiques [math]/Optimisation et contrôle [math.OC]
English abstract : [en]
In evolutionary multi-objective optimization, variation operators are crucially important to produce improving solutions, hence leading the search towards the most promising regions of the solution space. In this paper, ...
Show more >
In evolutionary multi-objective optimization, variation operators are crucially important to produce improving solutions, hence leading the search towards the most promising regions of the solution space. In this paper, we propose to use a machine learning modeling technique, namely random forest, in order to estimate, at each iteration in the course of the search process, the importance of decision variables with respect to convergence to the Pareto front. Accordingly, we are able to propose an adaptive mechanism guiding the recombination step with the aim of stressing the convergence of the so-obtained offspring. By conducting an experimental analysis using some of the WFG and DTLZ benchmark test problems, we are able to elicit the behavior of the proposed approach, and to demonstrate the benefits of incorporating machine learning techniques in order to design new efficient adaptive variation mechanisms.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01380646/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01380646/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01380646/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017