• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Parallel extremal optimization in processor ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1016/j.asoc.2016.04.033
Title :
Parallel extremal optimization in processor load balancing for distributed applications
Author(s) :
Falco, Ivanoe De [Auteur]
Institute of High Performance Computing and Networking [ICAR]
Laskowski, Eryk [Auteur]
Institute of Computer Science [Warszawa]
Olejnik, Richard [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Scafuri, Umberto [Auteur]
Institute of High Performance Computing and Networking [ICAR]
Tarantino, Ernesto [Auteur]
Institute of High Performance Computing and Networking [ICAR]
Tudruj, Marek [Auteur]
Polish-Japanese Institute of Information Technology [PJIIT]
Institute of Computer Science [Warszawa]
Journal title :
Applied Soft Computing
Pages :
16
Publisher :
Elsevier
Publication date :
2016-10-01
ISSN :
1568-4946
English keyword(s) :
Extremal optimization
Distributed programs
Load balancing
HAL domain(s) :
Informatique [cs]
English abstract : [en]
The paper concerns parallel methods for extremal optimization (EO) applied in processor load balancingin execution of distributed programs. In these methods EO algorithms detect an optimized strategy oftasks migration ...
Show more >
The paper concerns parallel methods for extremal optimization (EO) applied in processor load balancingin execution of distributed programs. In these methods EO algorithms detect an optimized strategy oftasks migration leading to reduction of program execution time. We use an improved EO algorithmwith guided state changes (EO-GS) that provides parallel search for next solution state during solutionimprovement based on some knowledge of the problem. The search is based on two-step stochasticselection using two fitness functions which account for computation and communication assessment ofmigration targets. Based on the improved EO-GS approach we propose and evaluate several versions ofthe parallelization methods of EO algorithms in the context of processor load balancing. Some of them usethe crossover operation known in genetic algorithms. The quality of the proposed algorithms is evaluatedby experiments with simulated load balancing in execution of distributed programs represented as macrodata flow graphs. Load balancing based on so parallelized improved EO provides better convergence ofthe algorithm, smaller number of task migrations to be done and reduced execution time of applications.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Université de Lille

Mentions légales
Université de Lille © 2017