• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Clustering technique for conceptual clusters
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
DOI :
10.1145/2991041.2991052
Title :
Clustering technique for conceptual clusters
Author(s) :
Govin, Brice [Auteur]
Analyses and Languages Constructs for Object-Oriented Application Evolution [RMOD]
Thales Air Systems
Monegier Du Sorbier, Arnaud [Auteur]
Thales Air Systems
Anquetil, Nicolas [Auteur] refId
Analyses and Languages Constructs for Object-Oriented Application Evolution [RMOD]
Ducasse, Stephane [Auteur] refId
Analyses and Languages Constructs for Object-Oriented Application Evolution [RMOD]
Conference title :
IWST'16 International Workshop on Smalltalk Technologies
City :
Prague
Country :
République tchèque
Start date of the conference :
2016-08-22
Journal title :
Proceedings of the 11th edition of the International Workshop on Smalltalk Technologies
HAL domain(s) :
Informatique [cs]/Langage de programmation [cs.PL]
Informatique [cs]/Génie logiciel [cs.SE]
English abstract : [en]
Clustering aims to classify elements into groups called classes or clusters. Clustering is used in reverse-engineering to help to understand legacy software. It is also a tech-nic used in re-engineering to propose gatherings ...
Show more >
Clustering aims to classify elements into groups called classes or clusters. Clustering is used in reverse-engineering to help to understand legacy software. It is also a tech-nic used in re-engineering to propose gatherings of software entities to engineers who can then accept them or not. This paper presents a Pharo implementation of an iterative and semi-automatic method for clustering. Our method proposes, to an end-user, clusters that are based on domain information and structural information. The method presented in this paper has been applied in an industrial project of architecture migration. We show that this method helps engineers to cluster software elements into domain concepts. The clustering gives a result of 56% of precision and 79% of recall after the automated part in a high level clustering. A deeper clustering gives a result of 51% of precision and 52% of recall.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01353205/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01353205/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01353205/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017