• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pliable rejection sampling
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
Pliable rejection sampling
Author(s) :
Erraqabi, Akram [Auteur]
Sequential Learning [SEQUEL]
Valko, Michal [Auteur] refId
Sequential Learning [SEQUEL]
Carpentier, Alexandra [Auteur]
Institut für Mathematik [Potsdam]
Maillard, Odalric-Ambrym [Auteur]
Machine Learning and Optimisation [TAO]
Conference title :
International Conference on Machine Learning
City :
New York City
Country :
Etats-Unis d'Amérique
Start date of the conference :
2016-06-19
HAL domain(s) :
Statistiques [stat]/Machine Learning [stat.ML]
English abstract : [en]
Rejection sampling is a technique for sampling from difficult distributions. However, its use is limited due to a high rejection rate. Common adaptive rejection sampling methods either work only for very specific distributions ...
Show more >
Rejection sampling is a technique for sampling from difficult distributions. However, its use is limited due to a high rejection rate. Common adaptive rejection sampling methods either work only for very specific distributions or without performance guarantees. In this paper, we present pliable rejection sampling (PRS), a new approach to rejection sampling, where we learn the sampling proposal using a kernel estimator. Since our method builds on rejection sampling, the samples obtained are with high probability i.i.d. and distributed according to f. Moreover, PRS comes with a guarantee on the number of accepted samples.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Extraction et transfert de connaissances dans l'apprentissage par renforcement
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-01322168/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01322168/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01322168/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017