• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mining Test Repositories for Automatic ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
Mining Test Repositories for Automatic Detection of UI Performance Regressions in Android Apps
Author(s) :
Gomez, Maria [Auteur]
Université de Lille, Sciences et Technologies
Self-adaptation for distributed services and large software systems [SPIRALS]
Rouvoy, Romain [Auteur] refId
Université de Lille, Sciences et Technologies
Self-adaptation for distributed services and large software systems [SPIRALS]
Adams, Bram [Auteur]
École Polytechnique de Montréal [EPM]
Seinturier, Lionel [Auteur] refId
Institut Universitaire de France [IUF]
Université de Lille, Sciences et Technologies
Self-adaptation for distributed services and large software systems [SPIRALS]
Scientific editor(s) :
Romain Robbes
Christian Bird
Conference title :
13th International Conference on Mining Software Repositories (MSR'16)
City :
Austin, Texas
Country :
Etats-Unis d'Amérique
Start date of the conference :
2016-05-14
Journal title :
Proceedings of the 13th International Conference on Mining Software Repositories
Publisher :
IEEE
Publication date :
2016-05-14
English keyword(s) :
performance regression
mining
context
Android
HAL domain(s) :
Informatique [cs]/Génie logiciel [cs.SE]
Informatique [cs]/Informatique ubiquitaire
Informatique [cs]/Informatique mobile
Informatique [cs]/Web
Informatique [cs]/Système d'exploitation [cs.OS]
English abstract : [en]
The reputation of a mobile app vendor’s apps is crucial to survive amongst the ever increasing competition, however this reputation largely depends on the quality of the apps, both functional and non-functional. One major ...
Show more >
The reputation of a mobile app vendor’s apps is crucial to survive amongst the ever increasing competition, however this reputation largely depends on the quality of the apps, both functional and non-functional. One major non-functional requirement of mobile apps is to guarantee smooth UI interactions, since choppy scrolling or navigation caused by performance problems on a mobile device’s limited hardware resources is highly annoying for end-users. The main research challenge of automatically identifying UI performance problems on mobile devices is that the performance of an app highly varies depending on its context—i.e., the hardware and software configurations on which it runs.This paper presents DUNE, an approach to automatically detect UI performance degradations in Android apps while taking into account context differences. DUNE builds an ensemble model of the UI performance of historical test runs that are known to be acceptable, for different configurations of context. We empirically evaluate DUNE on real UI performance defects reported in two Android apps. We demonstrate that this toolset can be successfully used to spot UI performance regressions at a fine granularity.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-01280784/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01280784/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01280784/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017