• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Algorithms for Differentially Private ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
Algorithms for Differentially Private Multi-Armed Bandits
Author(s) :
Tossou, Aristide [Auteur]
Dimitrakakis, Christos [Auteur]
Université de Lille, Sciences Humaines et Sociales
Sequential Learning [SEQUEL]
Conference title :
AAAI 2016
City :
Phoenix, Arizona
Country :
Etats-Unis d'Amérique
Start date of the conference :
2016-02-11
English keyword(s) :
differential privacy
regret
reinforcement learning
stochastic multi-armed bandits
HAL domain(s) :
Statistiques [stat]/Machine Learning [stat.ML]
Informatique [cs]/Cryptographie et sécurité [cs.CR]
English abstract : [en]
We present differentially private algorithms for the stochastic Multi-Armed Bandit (MAB) problem. This is a problem for applications such as adaptive clinical trials, experiment design, and user-targeted advertising ...
Show more >
We present differentially private algorithms for the stochastic Multi-Armed Bandit (MAB) problem. This is a problem for applications such as adaptive clinical trials, experiment design, and user-targeted advertising where private information is connected to individual rewards. Our major contribution is to show that there exist $(\epsilon, \delta)$ differentially private variants of Upper Confidence Bound algorithms which have optimal regret, $O(\epsilon^{-1} + \log T)$. This is a significant improvement over previous results, which only achieve poly-log regret $O(\epsilon^{-2} \log^{2} T)$, because of our use of a novel interval-based mechanism. We also substantially improve the bounds of previous family of algorithms which use a continual release mechanism. Experiments clearly validate our theoretical bounds.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-01234427/document
  • Open access
  • Access the document
Thumbnail
  • http://arxiv.org/pdf/1511.08681
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01234427/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01234427/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017