• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Human-Machine Dialogue as a Stochastic Game
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
Human-Machine Dialogue as a Stochastic Game
Author(s) :
Barlier, Merwan [Auteur]
Sequential Learning [SEQUEL]
Orange Labs [Issy les Moulineaux]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Perolat, Julien [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Université de Lille, Sciences et Technologies
Laroche, Romain [Auteur]
Orange Labs [Issy les Moulineaux]
Pietquin, Olivier [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Université de Lille, Sciences et Technologies
Institut Universitaire de France [IUF]
Sequential Learning [SEQUEL]
Conference title :
16th Annual SIGdial Meeting on Discourse and Dialogue (SIGDIAL 2015)
City :
Prague
Country :
République tchèque
Start date of the conference :
2015-09-02
Publication date :
2015-09
HAL domain(s) :
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Interface homme-machine [cs.HC]
English abstract : [en]
In this paper, an original framework to model human-machine spoken dialogues is proposed to deal with co-adaptation between users and Spoken Dialogue Systems in non-cooperative tasks. The conversation is modeled as a ...
Show more >
In this paper, an original framework to model human-machine spoken dialogues is proposed to deal with co-adaptation between users and Spoken Dialogue Systems in non-cooperative tasks. The conversation is modeled as a Stochastic Game: both the user and the system have their own preferences but have to come up with an agreement to solve a non-cooperative task. They are jointly trained so the Dialogue Manager learns the optimal strategy against the best possible user. Results obtained by simulation show that non-trivial strategies are learned and that this framework is suitable for dialogue modeling.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Dialogue Homme-Robot
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-01225848/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01225848/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01225848/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017