Human-Machine Dialogue as a Stochastic Game
Type de document :
Communication dans un congrès avec actes
Titre :
Human-Machine Dialogue as a Stochastic Game
Auteur(s) :
Barlier, Merwan [Auteur]
Sequential Learning [SEQUEL]
Orange Labs [Issy les Moulineaux]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Perolat, Julien [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Université de Lille, Sciences et Technologies
Laroche, Romain [Auteur]
Orange Labs [Issy les Moulineaux]
Pietquin, Olivier [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Université de Lille, Sciences et Technologies
Institut universitaire de France [IUF]
Sequential Learning [SEQUEL]
Sequential Learning [SEQUEL]
Orange Labs [Issy les Moulineaux]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Perolat, Julien [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Université de Lille, Sciences et Technologies
Laroche, Romain [Auteur]
Orange Labs [Issy les Moulineaux]
Pietquin, Olivier [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Université de Lille, Sciences et Technologies
Institut universitaire de France [IUF]
Sequential Learning [SEQUEL]
Titre de la manifestation scientifique :
16th Annual SIGdial Meeting on Discourse and Dialogue (SIGDIAL 2015)
Ville :
Prague
Pays :
République tchèque
Date de début de la manifestation scientifique :
2015-09-02
Date de publication :
2015-09
Discipline(s) HAL :
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Interface homme-machine [cs.HC]
Informatique [cs]/Interface homme-machine [cs.HC]
Résumé en anglais : [en]
In this paper, an original framework to model human-machine spoken dialogues is proposed to deal with co-adaptation between users and Spoken Dialogue Systems in non-cooperative tasks. The conversation is modeled as a ...
Lire la suite >In this paper, an original framework to model human-machine spoken dialogues is proposed to deal with co-adaptation between users and Spoken Dialogue Systems in non-cooperative tasks. The conversation is modeled as a Stochastic Game: both the user and the system have their own preferences but have to come up with an agreement to solve a non-cooperative task. They are jointly trained so the Dialogue Manager learns the optimal strategy against the best possible user. Results obtained by simulation show that non-trivial strategies are learned and that this framework is suitable for dialogue modeling.Lire moins >
Lire la suite >In this paper, an original framework to model human-machine spoken dialogues is proposed to deal with co-adaptation between users and Spoken Dialogue Systems in non-cooperative tasks. The conversation is modeled as a Stochastic Game: both the user and the system have their own preferences but have to come up with an agreement to solve a non-cooperative task. They are jointly trained so the Dialogue Manager learns the optimal strategy against the best possible user. Results obtained by simulation show that non-trivial strategies are learned and that this framework is suitable for dialogue modeling.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-01225848/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01225848/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01225848/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- W15-4602.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- W15-4602.pdf
- Accès libre
- Accéder au document