• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Concentration inequalities for sampling ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.3150/14-BEJ605
Title :
Concentration inequalities for sampling without replacement
Author(s) :
Bardenet, Remi [Auteur] refId
University of Oxford
Maillard, Odalric-Ambrym [Auteur] refId
Department of Electrical Engineering - Technion [Haïfa] [EE-Technion]
Machine Learning and Optimisation [TAO]
Journal title :
Bernoulli
Pages :
1361-1385
Publisher :
Bernoulli Society for Mathematical Statistics and Probability
Publication date :
2015
ISSN :
1350-7265
English keyword(s) :
Sampling without replacement
Concentration bounds
HAL domain(s) :
Mathématiques [math]/Statistiques [math.ST]
English abstract : [en]
Concentration inequalities quantify the deviation of a random variable from a fixed value. In spite of numerous applications, such as opinion surveys or ecological counting procedures , few concentration results are known ...
Show more >
Concentration inequalities quantify the deviation of a random variable from a fixed value. In spite of numerous applications, such as opinion surveys or ecological counting procedures , few concentration results are known for the setting of sampling without replacement from a finite population. Until now, the best general concentration inequality has been a Hoeffding inequality due to ?. In this paper, we first improve on the fundamental result of ?, and further extend it to obtain a Bernstein concentration bound for sampling without replacement. We then derive an empirical version of our bound that does not require the variance to be known to the user.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01216652/document
  • Open access
  • Access the document
Thumbnail
  • https://doi.org/10.3150/14-bej605
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01216652/document
  • Open access
  • Access the document
Thumbnail
  • https://doi.org/10.3150/14-bej605
  • Open access
  • Access the document
Thumbnail
  • https://doi.org/10.3150/14-bej605
  • Open access
  • Access the document
Thumbnail
  • https://doi.org/10.3150/14-bej605
  • Open access
  • Access the document
Thumbnail
  • https://doi.org/10.3150/14-bej605
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017