• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dictionary Learning for a Sparse Appearance ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Title :
Dictionary Learning for a Sparse Appearance Model in Visual Tracking
Author(s) :
Rousseau, Sylvain [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Centrale Lille
Chainais, Pierre [Auteur] refId
Centrale Lille
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Garnier, Christelle [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Institut TELECOM/TELECOM Lille1
Conference title :
ICIP
City :
Québec City
Country :
Canada
Start date of the conference :
2015-09-27
English keyword(s) :
dictionary learning
sparse coding
particle filtering
object tracking
HAL domain(s) :
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
English abstract : [en]
This paper presents a novel approach to visual object tracking based on particle filtering. The tracked object is modelled by a sparse representation provided by dictionary learning. Such an approach permits to describe ...
Show more >
This paper presents a novel approach to visual object tracking based on particle filtering. The tracked object is modelled by a sparse representation provided by dictionary learning. Such an approach permits to describe the target by a model of reduced dimension. The likelihood of a candidate region is built on a similarity measure between the sparse representations of a set of patches (at known positions) in the dictionary learnt from the reference template. Experimental validation is performed on various video sequences and shows the robustness of the proposed approach.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01211263/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01211263/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01211263/document
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • master.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017