A Canonical Automaton for One-Rule ...
Document type :
Article dans une revue scientifique
DOI :
Title :
A Canonical Automaton for One-Rule Length-Preserving String Rewrite Systems
Author(s) :
Latteux, Michel [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Roos, Yves [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Roos, Yves [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Journal title :
Information and Computation
Pages :
203--228
Publisher :
Elsevier
Publication date :
2015
ISSN :
0890-5401
English keyword(s) :
String rewrite system
rational transduction
automaton.
rational transduction
automaton.
HAL domain(s) :
Informatique [cs]/Théorie et langage formel [cs.FL]
English abstract : [en]
In this work, we use rearrangements in rewriting positions sequence in order to study precisely the structure of the derivations in one-rule length-preserving string rewrite systems. That yields to the definition of a ...
Show more >In this work, we use rearrangements in rewriting positions sequence in order to study precisely the structure of the derivations in one-rule length-preserving string rewrite systems. That yields to the definition of a letter-to-letter transducer that computes the relation induced by a one-rule length-preserving string rewrite system. This transducer can be seen as an automaton over an alphabet A x A. We prove that this automaton is finite if and only if the corresponding relation is rational. We also identify a sufficient condition for the context-freeness of the language L recognized by this automaton and, when this condition is satisfied, we construct a pushdown automaton that recognizes L.Show less >
Show more >In this work, we use rearrangements in rewriting positions sequence in order to study precisely the structure of the derivations in one-rule length-preserving string rewrite systems. That yields to the definition of a letter-to-letter transducer that computes the relation induced by a one-rule length-preserving string rewrite system. This transducer can be seen as an automaton over an alphabet A x A. We prove that this automaton is finite if and only if the corresponding relation is rational. We also identify a sufficient condition for the context-freeness of the language L recognized by this automaton and, when this condition is satisfied, we construct a pushdown automaton that recognizes L.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- https://doi.org/10.1016/j.ic.2015.07.002
- Open access
- Access the document
- https://doi.org/10.1016/j.ic.2015.07.002
- Open access
- Access the document
- https://doi.org/10.1016/j.ic.2015.07.002
- Open access
- Access the document
- https://doi.org/10.1016/j.ic.2015.07.002
- Open access
- Access the document
- https://doi.org/10.1016/j.ic.2015.07.002
- Open access
- Access the document
- https://doi.org/10.1016/j.ic.2015.07.002
- Open access
- Access the document