Robust synchronization for multistable systems
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Robust synchronization for multistable systems
Author(s) :
Ahmed, Hafiz [Auteur correspondant]
Non-Asymptotic estimation for online systems [NON-A]
Ushirobira, Rosane [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Efimov, Denis [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Perruquetti, Wilfrid [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Non-Asymptotic estimation for online systems [NON-A]
Ushirobira, Rosane [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Efimov, Denis [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Perruquetti, Wilfrid [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Journal title :
IEEE Transactions on Automatic Control
Pages :
1625-1630
Publisher :
Institute of Electrical and Electronics Engineers
Publication date :
2016-06
ISSN :
0018-9286
English keyword(s) :
Numerical stability
Lyapunov methods
Robustness
Synchronization
Stability analysis
Nonlinear systems
Manifolds
Lyapunov methods
Robustness
Synchronization
Stability analysis
Nonlinear systems
Manifolds
HAL domain(s) :
Sciences de l'ingénieur [physics]/Automatique / Robotique
Informatique [cs]/Recherche d'information [cs.IR]
Informatique [cs]/Recherche d'information [cs.IR]
English abstract : [en]
In this note, we study a robust synchronization problem for multistable systems evolving on manifolds within an Input-to-State Stability (ISS) framework. Based on a recent generalization of the classical ISS theory to ...
Show more >In this note, we study a robust synchronization problem for multistable systems evolving on manifolds within an Input-to-State Stability (ISS) framework. Based on a recent generalization of the classical ISS theory to multistable systems, a robust synchronization protocol is designed with respect to a compact invariant set of the unperturbed system. The invariant set is assumed to admit a decomposition without cycles, that is, with neither homoclinic nor heteroclinic orbits. Numerical simulation examples illustrate our theoretical results.Show less >
Show more >In this note, we study a robust synchronization problem for multistable systems evolving on manifolds within an Input-to-State Stability (ISS) framework. Based on a recent generalization of the classical ISS theory to multistable systems, a robust synchronization protocol is designed with respect to a compact invariant set of the unperturbed system. The invariant set is assumed to admit a decomposition without cycles, that is, with neither homoclinic nor heteroclinic orbits. Numerical simulation examples illustrate our theoretical results.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- https://hal.inria.fr/hal-01185112/document
- Open access
- Access the document
- https://hal.inria.fr/hal-01185112/document
- Open access
- Access the document
- https://hal.inria.fr/hal-01185112/document
- Open access
- Access the document
- document
- Open access
- Access the document
- _AUEP_TAC_2015.pdf
- Open access
- Access the document
- _AUEP_TAC_2015.pdf
- Open access
- Access the document