• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Perfect Hashing Structures for Parallel ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
DOI :
10.1109/IPDPSW.2015.105
Title :
Perfect Hashing Structures for Parallel Similarity Searches
Author(s) :
Tran, Tuan Tu [Auteur]
Giraud, Mathieu [Auteur] refId
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Bioinformatics and Sequence Analysis [BONSAI]
Varré, Jean-Stéphane [Auteur] refId
Bioinformatics and Sequence Analysis [BONSAI]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Conference title :
International Workshop on High Performance Computational Biology (HiCOMB 2015) / International Parallel and Distributed Processing Symposium (IPDPS 2015)
City :
Hyderabad
Country :
Inde
Start date of the conference :
2015
Publication date :
2015
English keyword(s) :
OpenCL
GPU
parallelism
perfect hash function
read mapper
seed-based heuristics
HAL domain(s) :
Informatique [cs]/Bio-informatique [q-bio.QM]
Informatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
English abstract : [en]
Seed-based heuristics have proved to be efficient for studying similarity between genetic databases with billions of base pairs. This paper focuses on algorithms and data structures for the filtering phase in seed-based ...
Show more >
Seed-based heuristics have proved to be efficient for studying similarity between genetic databases with billions of base pairs. This paper focuses on algorithms and data structures for the filtering phase in seed-based heuristics, with an emphasis on efficient parallel GPU/manycores implementa- tion. We propose a 2-stage index structure which is based on neighborhood indexing and perfect hashing techniques. This structure performs a filtering phase over the neighborhood regions around the seeds in constant time and avoid as much as possible random memory accesses and branch divergences. Moreover, it fits particularly well on parallel SIMD processors, because it requires intensive but homogeneous computational operations. Using this data structure, we developed a fast and sensitive OpenCL prototype read mapper.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Nouvelles approches algorithmiques et bioinformatiques pour l'analyse des grandes masses de données issues des séquenceurs de nouvelle génération.
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • http://www.hicomb.org/papers/HICOMB2015-01.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017