• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning Path Queries on Graph Databases
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
DOI :
10.5441/002/edbt.2015.11
Title :
Learning Path Queries on Graph Databases
Author(s) :
Bonifati, Angela [Auteur]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Linking Dynamic Data [LINKS]
Ciucanu, Radu [Auteur correspondant]
Linking Dynamic Data [LINKS]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Lemay, Aurélien [Auteur]
Linking Dynamic Data [LINKS]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Conference title :
18th International Conference on Extending Database Technology (EDBT)
City :
Bruxelles
Country :
Belgique
Start date of the conference :
2015-03-23
HAL domain(s) :
Informatique [cs]/Base de données [cs.DB]
English abstract : [en]
We investigate the problem of learning graph queries by exploiting user examples. The input consists of a graph database in which the user has labeled a few nodes as positive or negative examples, depending on whether or ...
Show more >
We investigate the problem of learning graph queries by exploiting user examples. The input consists of a graph database in which the user has labeled a few nodes as positive or negative examples, depending on whether or not she would like the nodes as part of the query result. Our goal is to handle such examples to find a query whose output is what the user expects. This kind of scenario is pivotal in several application settings where unfamiliar users need to be assisted to specify their queries. In this paper, we focus on path queries defined by regular expressions, we identify fundamental difficulties of our problem setting, we formalize what it means to be learnable, and we prove that the class of queries under study enjoys this property. We additionally investigate an interactive scenario where we start with an empty set of examples and we identify the informative nodes i.e., those that contribute to the learning process. Then, we ask the user to label these nodes and iterate the learning process until she is satisfied with the learned query. Finally, we present an experimental study on both real and synthetic datasets devoted to gauging the effectiveness of our learning algorithm and the improvement of the interactive approach.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-01068055/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01068055/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01068055/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017