• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Self-configuration of the Number of ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
Self-configuration of the Number of Concurrently Running MapReduce Jobs in a Hadoop Cluster
Author(s) :
Zhang, Bo [Auteur]
Self-adaptation for distributed services and large software systems [SPIRALS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Křikava, Filip [Auteur]
Self-adaptation for distributed services and large software systems [SPIRALS]
Rouvoy, Romain [Auteur] refId
Self-adaptation for distributed services and large software systems [SPIRALS]
Seinturier, Lionel [Auteur] refId
Institut universitaire de France [IUF]
Self-adaptation for distributed services and large software systems [SPIRALS]
Conference title :
ICAC 2015
City :
Grenoble
Country :
France
Start date of the conference :
2015-07-07
English keyword(s) :
Hadoop Cluster
MapReduce
Performance Optimization
HAL domain(s) :
Informatique [cs]
Informatique [cs]/Recherche d'information [cs.IR]
English abstract : [en]
There is a trade-off between the number of concurrently running MapReduce jobs and their corresponding map and reduce tasks within a node in a Hadoop cluster. Leaving this trade-off statically configured to a single value ...
Show more >
There is a trade-off between the number of concurrently running MapReduce jobs and their corresponding map and reduce tasks within a node in a Hadoop cluster. Leaving this trade-off statically configured to a single value can significantly reduce job response times leaving only suboptimal resource usage. To overcome this problem, we propose a feedback control loop based approach that dynamically adjusts the Hadoop resource manager configuration based on the current state of the cluster. The preliminary assessment based on workloads synthesized from real-world traces shows that the system performance can be improved by about 30% compared to default Hadoop setup.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-01143157/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01143157/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01143157/document
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • icac15-paper.pdf
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • icac15-paper.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017