Singular quadratic Lie superalgebras
Document type :
Article dans une revue scientifique
Title :
Singular quadratic Lie superalgebras
Author(s) :
Duong, Minh Thanh [Auteur]
Ushirobira, Rosane [Auteur]
Institut de Mathématiques de Bourgogne [Dijon] [IMB]
Non-Asymptotic estimation for online systems [NON-A]
Ushirobira, Rosane [Auteur]
Institut de Mathématiques de Bourgogne [Dijon] [IMB]
Non-Asymptotic estimation for online systems [NON-A]
Journal title :
Journal of Algebra
Pages :
372 - 412
Publisher :
Elsevier
Publication date :
2014
ISSN :
0021-8693
English keyword(s) :
17B30
17B05
Adjoint orbits 2000 MSC: 15A63
Invariant
17B70
Double extensions
Super Poisson bracket
Quadratic Lie superalgebras
Generalized double extensions
17B05
Adjoint orbits 2000 MSC: 15A63
Invariant
17B70
Double extensions
Super Poisson bracket
Quadratic Lie superalgebras
Generalized double extensions
HAL domain(s) :
Mathématiques [math]/Théorie des représentations [math.RT]
English abstract : [en]
In this paper, we generalize some results on quadratic Lie algebras to quadratic Lie superalgebras, by applying graded Lie algebras tools. We establish a one-to-one correspondence between non-Abelian quadratic Lie superalgebra ...
Show more >In this paper, we generalize some results on quadratic Lie algebras to quadratic Lie superalgebras, by applying graded Lie algebras tools. We establish a one-to-one correspondence between non-Abelian quadratic Lie superalgebra structures and nonzero even super-antisymmetric 3-forms satisfying a structure equation. An invariant number of quadratic Lie superalgebras is then defined, called the dup-number. Singular quadratic Lie superalgebras (i.e. those with nonzero dup-number) are studied. We show that their classification follows the classifications of O(m)-adjoint orbits of o(m) and Sp(2n)-adjoint orbits of sp(2n). An explicit formula for the quadratic dimension of singular quadratic Lie superalgebras is also provided. Finally, we discuss a class of 2-nilpotent quadratic Lie superalgebras associated to a particular super-antisymmetric 3-form.Show less >
Show more >In this paper, we generalize some results on quadratic Lie algebras to quadratic Lie superalgebras, by applying graded Lie algebras tools. We establish a one-to-one correspondence between non-Abelian quadratic Lie superalgebra structures and nonzero even super-antisymmetric 3-forms satisfying a structure equation. An invariant number of quadratic Lie superalgebras is then defined, called the dup-number. Singular quadratic Lie superalgebras (i.e. those with nonzero dup-number) are studied. We show that their classification follows the classifications of O(m)-adjoint orbits of o(m) and Sp(2n)-adjoint orbits of sp(2n). An explicit formula for the quadratic dimension of singular quadratic Lie superalgebras is also provided. Finally, we discuss a class of 2-nilpotent quadratic Lie superalgebras associated to a particular super-antisymmetric 3-form.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- https://hal.inria.fr/hal-01114188/document
- Open access
- Access the document
- http://arxiv.org/pdf/1206.5504
- Open access
- Access the document
- https://hal.inria.fr/hal-01114188/document
- Open access
- Access the document
- https://hal.inria.fr/hal-01114188/document
- Open access
- Access the document
- https://hal.inria.fr/hal-01114188/document
- Open access
- Access the document