• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Singular quadratic Lie superalgebras
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1016/j.jalgebra.2014.02.034
Title :
Singular quadratic Lie superalgebras
Author(s) :
Duong, Minh Thanh [Auteur]
Ushirobira, Rosane [Auteur]
Institut de Mathématiques de Bourgogne [Dijon] [IMB]
Non-Asymptotic estimation for online systems [NON-A]
Journal title :
Journal of Algebra
Pages :
372 - 412
Publisher :
Elsevier
Publication date :
2014
ISSN :
0021-8693
English keyword(s) :
17B30
17B05
Adjoint orbits 2000 MSC: 15A63
Invariant
17B70
Double extensions
Super Poisson bracket
Quadratic Lie superalgebras
Generalized double extensions
HAL domain(s) :
Mathématiques [math]/Théorie des représentations [math.RT]
English abstract : [en]
In this paper, we generalize some results on quadratic Lie algebras to quadratic Lie superalgebras, by applying graded Lie algebras tools. We establish a one-to-one correspondence between non-Abelian quadratic Lie superalgebra ...
Show more >
In this paper, we generalize some results on quadratic Lie algebras to quadratic Lie superalgebras, by applying graded Lie algebras tools. We establish a one-to-one correspondence between non-Abelian quadratic Lie superalgebra structures and nonzero even super-antisymmetric 3-forms satisfying a structure equation. An invariant number of quadratic Lie superalgebras is then defined, called the dup-number. Singular quadratic Lie superalgebras (i.e. those with nonzero dup-number) are studied. We show that their classification follows the classifications of O(m)-adjoint orbits of o(m) and Sp(2n)-adjoint orbits of sp(2n). An explicit formula for the quadratic dimension of singular quadratic Lie superalgebras is also provided. Finally, we discuss a class of 2-nilpotent quadratic Lie superalgebras associated to a particular super-antisymmetric 3-form.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-01114188/document
  • Open access
  • Access the document
Thumbnail
  • http://arxiv.org/pdf/1206.5504
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01114188/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01114188/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01114188/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017