• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Analysis on Selection for High-Resolution ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
An Analysis on Selection for High-Resolution Approximations in Many-Objective Optimization
Author(s) :
Aguirre, Hernan [Auteur]
Faculty of Engineering [Nagano]
Liefooghe, Arnaud [Auteur] refId
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Verel, Sébastien [Auteur]
Laboratoire d'Informatique Signal et Image de la Côte d'Opale [LISIC]
Tanaka, Kiyoshi [Auteur]
Faculty of Engineering [Nagano]
Scientific editor(s) :
Thomas Bartz-Beielstein
Jürgen Branke
Bogdan Filipič
Jim Smith
Conference title :
Parallel Problem Solving from Nature - PPSN XIII
City :
Ljubljana
Country :
Slovénie
Start date of the conference :
2014-09-13
Book title :
Parallel Problem Solving from Nature - PPSN XIII
Journal title :
Lecture Notes in Computer Science
Publisher :
Springer International Publishing
Springer
Publication date :
2014-09-13
HAL domain(s) :
Informatique [cs]/Intelligence artificielle [cs.AI]
English abstract : [en]
This work studies the behavior of three elitist multi- and many-objective evolutionary algorithms generating a high-resolution approximation of the Pareto optimal set. Several search-assessment indicators are defined to ...
Show more >
This work studies the behavior of three elitist multi- and many-objective evolutionary algorithms generating a high-resolution approximation of the Pareto optimal set. Several search-assessment indicators are defined to trace the dynamics of survival selection and measure the ability to simultaneously keep optimal solutions and discover new ones under different population sizes, set as a fraction of the size of the Pareto optimal set.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01066206/document
  • Open access
  • Access the document
Thumbnail
  • http://arxiv.org/pdf/1409.7478
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01066206/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017