• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sodium boiling Detection in a LMFBR Using ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
Sodium boiling Detection in a LMFBR Using Autoregressive Models and SVM
Author(s) :
Bose, Tanmoy [Auteur]
Indian Institute of Technology Kharagpur [IIT Kharagpur]
Geraldo, Issa Cherif [Auteur]
Systèmes Tolérants aux Fautes [STF]
Pekpe, Midzodzi [Auteur] refId
Laboratoire d'Automatique, Génie Informatique et Signal [LAGIS]
Cassar, Jean Philippe [Auteur]
Systèmes Tolérants aux Fautes [STF]
Mohanty, Amiya Rajan [Auteur]
Indian Institute of Technology Kharagpur [IIT Kharagpur]
Paumel, Kevin [Auteur]
CEA Cadarache
Conference title :
IFAC World Congress 214
City :
Cape Town
Country :
Afrique du Sud
Start date of the conference :
2014-08-24
Book title :
Fault detection and isolation, switching systems, discernability and distinguishability
Publication date :
2014-08-24
HAL domain(s) :
Sciences de l'ingénieur [physics]/Automatique / Robotique
English abstract : [en]
This paper deals with acoustic detection of sodium boiling in a Liquid Metal Fast Breeder Reactor (LMFBR) cooled by liquid sodium. As sodium boiling induces acoustic emission, the method consists in real time analysis of ...
Show more >
This paper deals with acoustic detection of sodium boiling in a Liquid Metal Fast Breeder Reactor (LMFBR) cooled by liquid sodium. As sodium boiling induces acoustic emission, the method consists in real time analysis of acoustic signals measured through wave guides. AutoRegressive (AR) models are estimated on sliding windows and are classified in boiling or non-boiling models using Support Vector Machines (SVM). One of the difficulties to cope with is disturbances due to the influence of some environment noises like the liquid coolant cavitation, vortex flow, shaft vibration and mechanical pump noise. These disturbances can generate false alarms or mask the boiling. The proposed method is designed to be robust toward these disturbances. Furthermore, the SVM are designed to be robust toward the operating mode changing. The application for online monitoring is made on data obtained from French nuclear power plant Phenix and boiling sound signals generated from Laboratory experiments. Different acoustic boiling sound levels are used and the effectiveness of the method is shown by the good detection rate and its low false alarm rate even for low acoustic boiling sound level.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01059371/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01059371/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01059371/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017