• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Integrating Profiling into MDE Compilers
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
DOI :
10.5121/ijsea.2014.5401
Title :
Integrating Profiling into MDE Compilers
Author(s) :
Aranega, Vincent [Auteur] refId
Contributions of the Data parallelism to real time [DART]
de Oliveira Rodrigues, Antonio Wendell [Auteur correspondant]
Contributions of the Data parallelism to real time [DART]
Etien, Anne [Auteur] refId
Analyses and Languages Constructs for Object-Oriented Application Evolution [RMOD]
Guyomarch, Frédéric [Auteur] orcid refId
Dynamic Reconfigurable Massively Parallel Architectures and Languages [DREAMPAL]
Dekeyser, Jean-Luc [Auteur] refId
Dynamic Reconfigurable Massively Parallel Architectures and Languages [DREAMPAL]
Journal title :
International Journal of Software Engineering & Applications
Pages :
20
Publisher :
AIRCC Publishing Corporation
Publication date :
2014-07-28
ISSN :
0976-2221
English keyword(s) :
Performance Analysis
MDE
Profiling
Traceability
HAL domain(s) :
Informatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
English abstract : [en]
Scientific computation requires more and more performance in its algorithms. New massively parallel architectures suit well to these algorithms. They are known for offering high performance and power efficiency. Unfortunately, ...
Show more >
Scientific computation requires more and more performance in its algorithms. New massively parallel architectures suit well to these algorithms. They are known for offering high performance and power efficiency. Unfortunately, as parallel programming for these architectures requires a complex distribution of tasks and data, developers find difficult to implement their applications effectively. Although approaches based on source-to-source intends to provide a low learning curve for parallel programming and take advantage of architecture features to create optimized applications, programming remains difficult for neophytes. This work aims at improving performance by returning to the high-level models, specific execution data from a profiling tool enhanced by smart advices computed by an analysis engine. In order to keep the link between execution and model, the process is based on a traceability mechanism. Once the model is automatically annotated, it can be re-factored aiming better performances on the re-generated code. Hence, this work allows keeping coherence between model and code without forgetting to harness the power of parallel architectures. To illustrate and clarify key points of this approach, we provide an experimental example in GPUs context. The example uses a transformation chain from UML-MARTE models to OpenCL code.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-01053031/document
  • Open access
  • Access the document
Thumbnail
  • https://doi.org/10.5121/ijsea.2014.5401
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01053031/document
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • 5414ijsea01.pdf
  • Open access
  • Access the document
Thumbnail
  • ijsea.2014.5401
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • 5414ijsea01.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017