• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Multi-start Local Search Heuristic for ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1016/j.future.2013.07.007
Title :
A Multi-start Local Search Heuristic for an Energy Efficient VMs Assignment on top of the OpenNebula Cloud Manager
Author(s) :
Kessaci, Yacine [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Nouredine, Melab [Auteur]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Talbi, El-Ghazali [Auteur] refId
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Journal title :
Future Generation Computer Systems
Pages :
237-256
Publisher :
Elsevier
Publication date :
2013-08-06
ISSN :
0167-739X
English keyword(s) :
Resource allocation
Cloud computing
Energy-aware scheduling
Multi-start local search
OpenNebula
Cloud manager
HAL domain(s) :
Informatique [cs]/Recherche opérationnelle [cs.RO]
Informatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
English abstract : [en]
Reducing energy consumption is an increasingly important issue in cloud computing, more specifically when dealing with a large scale cloud. Minimizing energy consumption can significantly reduce the amount of energy bills, ...
Show more >
Reducing energy consumption is an increasingly important issue in cloud computing, more specifically when dealing with a large scale cloud. Minimizing energy consumption can significantly reduce the amount of energy bills, and the greenhouse gas emissions. Therefore, many researches are carried out to develop new methods in order to consume less energy. In this paper, we present an Energy-aware Multi-start Local Search algorithm (EMLS-ONC) that optimizes the energy consumption of an OpenNebula based Cloud. Moreover, we propose a Pareto Multi-Objective version of the EMLS-ONC called EMLS-ONC-MO dealing with both the energy consumption and the Service Level Agreement (SLA). The objective is to find a Pareto tradeoff between reducing the energy consumption of the cloud while preserving the performance of Virtual Machines (VMs). The different schedulers have been experimented using different arrival scenarios of VMs and different hardware configurations (artificial and real). The results show that EMLS-ONC and EMLS-ONC-MO outperform the other energy- and performance-aware algorithms in addition to the one provided in OpenNebula by a significant margin on the considered criteria. Besides, EMLS-ONC and EMLS-ONC-MO are proved to be able to assign at least as many VMs as the other algorithms.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-00924858/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-00924858/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017