Learning from Multiple Graphs using a ...
Type de document :
Communication dans un congrès avec actes
Titre :
Learning from Multiple Graphs using a Sigmoid Kernel
Auteur(s) :
Ricatte, Thomas [Auteur]
Machine Learning in Information Networks [MAGNET]
Garriga, Gemma [Auteur]
Machine Learning in Information Networks [MAGNET]
Gilleron, Remi [Auteur]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Machine Learning in Information Networks [MAGNET]
Tommasi, Marc [Auteur]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Machine Learning in Information Networks [MAGNET]
Machine Learning in Information Networks [MAGNET]
Garriga, Gemma [Auteur]
Machine Learning in Information Networks [MAGNET]
Gilleron, Remi [Auteur]

Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Machine Learning in Information Networks [MAGNET]
Tommasi, Marc [Auteur]

Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Machine Learning in Information Networks [MAGNET]
Titre de la manifestation scientifique :
The 12th International Conference on Machine Learning and Applications (ICMLA'13)
Ville :
Miami
Pays :
Etats-Unis d'Amérique
Date de début de la manifestation scientifique :
2013-12-04
Date de publication :
2013-12-04
Discipline(s) HAL :
Informatique [cs]/Intelligence artificielle [cs.AI]
Résumé en anglais : [en]
This paper studies the problem of learning from a set of input graphs, each of them representing a different relation over the same set of nodes. Our goal is to merge those input graphs by embedding them into an Euclidean ...
Lire la suite >This paper studies the problem of learning from a set of input graphs, each of them representing a different relation over the same set of nodes. Our goal is to merge those input graphs by embedding them into an Euclidean space related to the commute time distance in the original graphs. This is done with the help of a small number of labeled nodes. Our algorithm output a combined kernel that can be used for different graph learning tasks. We consider two combination methods: the (classical) linear combination and the sigmoid combination. We compare the combination methods on node classification tasks using different semi-supervised graph learning algorithms. We note that the sigmoid combination method exhibits very positive results.Lire moins >
Lire la suite >This paper studies the problem of learning from a set of input graphs, each of them representing a different relation over the same set of nodes. Our goal is to merge those input graphs by embedding them into an Euclidean space related to the commute time distance in the original graphs. This is done with the help of a small number of labeled nodes. Our algorithm output a combined kernel that can be used for different graph learning tasks. We consider two combination methods: the (classical) linear combination and the sigmoid combination. We compare the combination methods on node classification tasks using different semi-supervised graph learning algorithms. We note that the sigmoid combination method exhibits very positive results.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-00913237/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-00913237/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- main.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- main.pdf
- Accès libre
- Accéder au document