• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

De l’utilisation de l’algèbre différentielle ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Thèse
Title :
De l’utilisation de l’algèbre différentielle pour la localisation et la navigation de robots mobiles autonomes
English title :
The use of differential algebra for the localisation and autonomous navigation of wheeled mobile robots
Author(s) :
Sert, Hugues [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Laboratoire d'Automatique, Génie Informatique et Signal [LAGIS]
Thesis director(s) :
Wilfrid Perruquetti
Annemarie Kökösy
Defence date :
2013-01-11
Jury president :
Michel Fliess [Président]
Philippe Martin [Rapporteur]
Philippe Bonnifait [Rapporteur]
François Chaumette [Rapporteur]
Patrick Rives
Gérard Lefranc
David Lemaitre
Jury member(s) :
Michel Fliess [Président]
Philippe Martin [Rapporteur]
Philippe Bonnifait [Rapporteur]
François Chaumette [Rapporteur]
Patrick Rives
Gérard Lefranc
David Lemaitre
Accredited body :
Ecole Centrale de Lille
Doctoral school :
École doctorale Sciences pour l'ingénieur (Lille)
NNT :
2013ECLI0002
Keyword(s) :
Robots mobiles à roues
Localisation
localisabilité
Planification de trajectoire
Stratégie
Algèbre différentielle
Différentiateur numérique
Platitude
Coopération
English keyword(s) :
Numerical differentiation
Flat output
Cooperation
Wheeled mobile robots
Localisation
localisability
Path planning
Decision
Differential algebra
HAL domain(s) :
Sciences de l'ingénieur [physics]/Autre
French abstract :
Ce travail étudie l'apport de l'algèbre différentielle à deux problématiques principales de la robotique mobile à roues, la localisation et la navigation. La première problématique consiste à être capable de dire où le ...
Show more >
Ce travail étudie l'apport de l'algèbre différentielle à deux problématiques principales de la robotique mobile à roues, la localisation et la navigation. La première problématique consiste à être capable de dire où le robot se situe dans son environnement. Nous supposons ici que nous possédons un certain nombre de points d'intérêt de l'espace dont les coordonnées dans cette espace sont connues. En fonction du nombre de points d'intérêt, il est possible ou non de localiser le robot. Cette notion de localisabilité est définie et étudiée dans le cadre algébrique. Nous montrons que ce cadre d'étude est plus intéressant que le cadre géométrique en ce sens que non seulement il permet l'étude de la localisabilité mais en plus il permet de construire des estimateurs d'états permettant de reconstruire la posture du robot. Cette étude est effectuée dans cinq cas d'études pour quatre des cinq classes de robots mobiles à roues. La deuxième problématique étudiée est celle de la navigation d'une flottille décentralisée de robots dans un environnement complexe. Ce travail présente une architecture pouvant être utilisée dans une large classe de problème et bénéficiant des avantages des approches discrètes et des approches continues. En effet, à haut niveau, un bloc stratégie spécifie l'objectif, les contraintes et leurs paramètres ainsi que la fonction coût utilisée, à bas niveau, une trajectoire est calculée afin de minimiser la fonction coût en respectant l'objectif et les contraintes du problème. Cette minimisation est faite sur un horizon glissant de manière à pouvoir prendre en compte des modifications de l'environnement ou de la mission en cours de navigationShow less >
English abstract : [en]
This work investigates the contribution of differential algebra to two main issues of wheel mobile robotics, localization and navigation. The first issue is to be able to tell where the robot is in its environment. We ...
Show more >
This work investigates the contribution of differential algebra to two main issues of wheel mobile robotics, localization and navigation. The first issue is to be able to tell where the robot is in its environment. We assume that we have a number of landmarks in space whose coordinates are known in this area. Depending on the number of landmarks, it is possible or not to localize the robot. This notion of localizability is defined and studied in the algebraic framework. We show that this framework is more interesting than the geometric framework in the sense that it not only allows the study of localizability, but it also allows us to construct estimators states to reconstruct the posture of the robot. This study was conducted in five cases study for four of the five classes of wheeled mobile robots. The second problem studied is that of a robot decentralized swarm navigation in a complex environment. This work presents an architecture that can be used in a wide class of problems and enjoying the benefits of discrete approaches and continuous approaches. Indeed, high-level block strategy specifies the goal, constraints and parameters as well as the cost function, a low-level block is used to compute a trajectory that minimize the cost function in accordance with the objective and the problem constraints. This minimization is done on a sliding window so it is possible to take changes in the environment or mission during navigation into accountShow less >
Language :
Français
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://tel.archives-ouvertes.fr/tel-00862870/document
  • Open access
  • Access the document
Thumbnail
  • https://tel.archives-ouvertes.fr/tel-00862870/document
  • Open access
  • Access the document
Thumbnail
  • https://tel.archives-ouvertes.fr/tel-00862870/document
  • Open access
  • Access the document
Thumbnail
  • https://tel.archives-ouvertes.fr/tel-00862870/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017