Feature selection in high dimensional ...
Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Title :
Feature selection in high dimensional regression problems for genomic
Author(s) :
Hamon, Julie [Auteur]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Dhaenens, Clarisse [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Even, Gaël [Auteur]
Gènes Diffusion [Douai]
Jacques, Julien [Auteur]
Laboratoire Paul Painlevé [LPP]
MOdel for Data Analysis and Learning [MODAL]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Dhaenens, Clarisse [Auteur]

Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Even, Gaël [Auteur]
Gènes Diffusion [Douai]
Jacques, Julien [Auteur]
Laboratoire Paul Painlevé [LPP]
MOdel for Data Analysis and Learning [MODAL]
Conference title :
Tenth International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics
City :
Nice
Country :
France
Start date of the conference :
2013-06-20
Publication date :
2013-06-20
HAL domain(s) :
Informatique [cs]/Recherche opérationnelle [cs.RO]
Statistiques [stat]/Méthodologie [stat.ME]
Informatique [cs]/Bio-informatique [q-bio.QM]
Sciences du Vivant [q-bio]/Bio-Informatique, Biologie Systémique [q-bio.QM]
Statistiques [stat]/Méthodologie [stat.ME]
Informatique [cs]/Bio-informatique [q-bio.QM]
Sciences du Vivant [q-bio]/Bio-Informatique, Biologie Systémique [q-bio.QM]
English abstract : [en]
In the context of genomic selection in animal breeding, an important objective consists in looking for explicative markers for a phe- notype under study. In order to deal with a high number of markers, we propose to use ...
Show more >In the context of genomic selection in animal breeding, an important objective consists in looking for explicative markers for a phe- notype under study. In order to deal with a high number of markers, we propose to use combinatorial optimization to perform variable selection. Results show that our approach outperforms some classical and widely used methods on simulated and "closed to real" datasets.Show less >
Show more >In the context of genomic selection in animal breeding, an important objective consists in looking for explicative markers for a phe- notype under study. In order to deal with a high number of markers, we propose to use combinatorial optimization to perform variable selection. Results show that our approach outperforms some classical and widely used methods on simulated and "closed to real" datasets.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- https://hal.inria.fr/hal-00839705/document
- Open access
- Access the document
- https://hal.inria.fr/hal-00839705/document
- Open access
- Access the document
- https://hal.inria.fr/hal-00839705/document
- Open access
- Access the document
- https://hal.inria.fr/hal-00839705/document
- Open access
- Access the document