• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fully Automatic 3D Facial Expression ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
Fully Automatic 3D Facial Expression Recognition using Differential Mean Curvature Maps and Histograms of Oriented Gradients
Author(s) :
Lemaire, Pierre [Auteur]
Extraction de Caractéristiques et Identification [imagine]
Chen, Liming [Auteur]
Extraction de Caractéristiques et Identification [imagine]
Ardabilian, Mohsen [Auteur]
Extraction de Caractéristiques et Identification [imagine]
Daoudi, Mohamed [Auteur]
FOX MIIRE [LIFL]
Conference title :
Workshop 3D Face Biometrics, IEEE Automatic Facial and Gesture Recognition
City :
Shanghai
Country :
Chine
Start date of the conference :
2013-04-22
Publication date :
2013-04-22
HAL domain(s) :
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
English abstract : [en]
In this paper, we propose an holistic, fully auto- matic approach to 3D Facial Expression Recognition (FER). A novel facial representation, namely Differential Mean Curva- ture Maps (DMCMs), is proposed to capture both ...
Show more >
In this paper, we propose an holistic, fully auto- matic approach to 3D Facial Expression Recognition (FER). A novel facial representation, namely Differential Mean Curva- ture Maps (DMCMs), is proposed to capture both global and local facial surface deformations which typically occur during facial expressions. These DMCMs are directly extracted from 3D depth images, by calculating the mean curvatures thanks to an integral computation. To account for facial morphology variations, they are further normalized through an aspect ratio deformation. Finally, Histograms of Oriented Gradients (HOG) are applied to regions of these normalized DMCMs and allow for the generation of facial features that can be fed to the widely used Multiclass-SVM classification algorithm. Using the protocol proposed by Gong et al. on the BU-3DFE dataset, the proposed approach displays competitive performance while staying entirely automatic.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-00823903/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-00823903/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-00823903/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-00823903/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017