• English
    • français
  • Aide
  •  | 
  • Contact
  •  | 
  • À Propos
  •  | 
  • Ouvrir une session
  • Portail HAL
  •  | 
  • Pages Pro Chercheurs
  • EN
  •  / 
  • FR
Voir le document 
  •   Accueil de LillOA
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • Voir le document
  •   Accueil de LillOA
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Time-series information and learning
  • BibTeX
  • CSV
  • Excel
  • RIS

Type de document :
Communication dans un congrès avec actes
Titre :
Time-series information and learning
Auteur(s) :
Ryabko, Daniil [Auteur]
Sequential Learning [SEQUEL]
Titre de la manifestation scientifique :
ISIT - International Symposium on Information Theory
Ville :
Istanbul
Pays :
Turquie
Date de début de la manifestation scientifique :
2013
Date de publication :
2013
Discipline(s) HAL :
Informatique [cs]/Intelligence artificielle [cs.AI]
Résumé en anglais : [en]
Given a time series $X_1,\dots,X_n,\dots$ taking values in a large (high-dimensional) space $\cX$, we would like to find a function $f$ from $\cX$ to a small (low-dimensional or finite) space $\cY$ such that the time series ...
Lire la suite >
Given a time series $X_1,\dots,X_n,\dots$ taking values in a large (high-dimensional) space $\cX$, we would like to find a function $f$ from $\cX$ to a small (low-dimensional or finite) space $\cY$ such that the time series $f(X_1),\dots,f(X_n),\dots$ retains all the information about the time-series dependence in the original sequence, or as much as possible thereof. This goal is formalized in this work, and it is shown that the target function $f$ can be found as the one that maximizes a certain quantity that can be expressed in terms of entropies of the series $(f(X_i))_{i\in\N}$. This quantity can be estimated empirically, and does not involve estimating the distribution on the original time series $(X_i)_{i\in\N}$.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017