• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The benefits of using multi-objectivization ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
The benefits of using multi-objectivization for mining Pittsburgh partial classification rules in imbalanced and discrete data
Author(s) :
Jacques, Julie [Auteur]
Alicante [Seclin]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Taillard, Julien [Auteur]
Alicante [Seclin]
Delerue, David [Auteur]
Alicante [Seclin]
Jourdan, Laetitia [Auteur] refId
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Dhaenens, Clarisse [Auteur] refId
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Conference title :
Genetic and Evolutionary Computation Conference (GECCO 2013)
City :
Amsterdam
Country :
Pays-Bas
Start date of the conference :
2013-07-06
Book title :
Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference
Publication date :
2013
HAL domain(s) :
Informatique [cs]/Recherche opérationnelle [cs.RO]
English abstract : [en]
A large number of rule interestingness measures have been used as objectives in multi-objective classification rule mining algorithms. Aggregation or Pareto dominance are commonly used to deal with these multiple objectives. ...
Show more >
A large number of rule interestingness measures have been used as objectives in multi-objective classification rule mining algorithms. Aggregation or Pareto dominance are commonly used to deal with these multiple objectives. This paper compares these approaches on a partial classification problem over discrete and imbalanced data. After performing a Principal Component Analysis (PCA) to select candidate objectives and find conflictive ones, the two approaches are evaluated. The Pareto dominance-based approach is implemented as a dominance-based local search (DMLS) algorithm using confidence and sensitivity as objectives, while the other is implemented as a single-objective hill climbing using F-Measure as an objective, which combines confidence and sensitivity. Results shows that the dominance-based approach obtains statistically better results than the single-objective approach.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Université de Lille

Mentions légales
Université de Lille © 2017