Identification of fractional order systems ...
Type de document :
Communication dans un congrès avec actes
Titre :
Identification of fractional order systems using modulating functions method
Auteur(s) :
Liu, Da-Yan [Auteur]
Laleg-Kirati, Taous-Meriem [Auteur]
Gibaru, Olivier [Auteur]
Laboratoire des Sciences de l'Information et des Systèmes [LSIS]
Non-Asymptotic estimation for online systems [NON-A]
Perruquetti, Wilfrid [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Systèmes Non Linéaires et à Retards [SyNeR]
Laleg-Kirati, Taous-Meriem [Auteur]
Gibaru, Olivier [Auteur]
Laboratoire des Sciences de l'Information et des Systèmes [LSIS]
Non-Asymptotic estimation for online systems [NON-A]
Perruquetti, Wilfrid [Auteur]

Non-Asymptotic estimation for online systems [NON-A]
Systèmes Non Linéaires et à Retards [SyNeR]
Titre de la manifestation scientifique :
2013 American Control Conference, 2013
Ville :
Washington, DC
Pays :
Etats-Unis d'Amérique
Date de début de la manifestation scientifique :
2013-06-17
Date de publication :
2013-06
Discipline(s) HAL :
Mathématiques [math]/Analyse numérique [math.NA]
Sciences de l'ingénieur [physics]/Automatique / Robotique
Sciences de l'ingénieur [physics]/Automatique / Robotique
Résumé en anglais : [en]
The modulating functions method has been used for the identification of linear and nonlinear systems. In this paper, we generalize this method to the on-line identification of fractional order systems based on the ...
Lire la suite >The modulating functions method has been used for the identification of linear and nonlinear systems. In this paper, we generalize this method to the on-line identification of fractional order systems based on the Riemann-Liouville fractional derivatives. First, a new fractional integration by parts formula involving the fractional derivative of a modulating function is given. Then, we apply this formula to a fractional order system, for which the fractional derivatives of the input and the output can be transferred into the ones of the modulating functions. By choosing a set of modulating functions, a linear system of algebraic equations is obtained. Hence, the unknown parameters of a fractional order system can be estimated by solving a linear system. Using this method, we do not need any initial values which are usually unknown and not equal to zero. Also we do not need to estimate the fractional derivatives of noisy output. Moreover, it is shown that the proposed estimators are robust against high frequency sinusoidal noises and the ones due to a class of stochastic processes. Finally, the efficiency and the stability of the proposed method is confirmed by some numerical simulations.Lire moins >
Lire la suite >The modulating functions method has been used for the identification of linear and nonlinear systems. In this paper, we generalize this method to the on-line identification of fractional order systems based on the Riemann-Liouville fractional derivatives. First, a new fractional integration by parts formula involving the fractional derivative of a modulating function is given. Then, we apply this formula to a fractional order system, for which the fractional derivatives of the input and the output can be transferred into the ones of the modulating functions. By choosing a set of modulating functions, a linear system of algebraic equations is obtained. Hence, the unknown parameters of a fractional order system can be estimated by solving a linear system. Using this method, we do not need any initial values which are usually unknown and not equal to zero. Also we do not need to estimate the fractional derivatives of noisy output. Moreover, it is shown that the proposed estimators are robust against high frequency sinusoidal noises and the ones due to a class of stochastic processes. Finally, the efficiency and the stability of the proposed method is confirmed by some numerical simulations.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-00801425/document
- Accès libre
- Accéder au document
- http://arxiv.org/pdf/1303.3877
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-00801425/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-00801425/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-00801425/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- ACC_Parameter_estimation_final.pdf
- Accès libre
- Accéder au document
- 1303.3877
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- ACC_Parameter_estimation_final.pdf
- Accès libre
- Accéder au document