Unpredictability and computational irreducibility
Type de document :
Partie d'ouvrage: Chapitre
Titre :
Unpredictability and computational irreducibility
Auteur(s) :
Zwirn, Hervé [Auteur]
Institut d'Histoire et de Philosophie des Sciences et des Techniques [IHPST]
Delahaye, Jean-Paul [Auteur]
Systèmes Multi-Agents et Comportements [SMAC]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Institut d'Histoire et de Philosophie des Sciences et des Techniques [IHPST]
Delahaye, Jean-Paul [Auteur]

Systèmes Multi-Agents et Comportements [SMAC]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Éditeur(s) ou directeur(s) scientifique(s) :
Hector Zenil, ed.
Titre de l’ouvrage :
Irreducibility and Computational Equivalence: 10 Years After Wolfram's A New Kind of Science (Emergence, Complexity and Computation)
Éditeur :
Springer
Date de publication :
2013
ISBN :
978-3-642-35481-6
Mot(s)-clé(s) en anglais :
Complexity
logical depth
cellular automata
irreducibility
computation
logical depth
cellular automata
irreducibility
computation
Discipline(s) HAL :
Sciences de l'Homme et Société/Histoire, Philosophie et Sociologie des sciences
Résumé en anglais : [en]
We explore several concepts for analyzing the intuitive notion of computational irreducibility and we propose a robust formal definition, first in the field of cellular automata and then in the general field of any computable ...
Lire la suite >We explore several concepts for analyzing the intuitive notion of computational irreducibility and we propose a robust formal definition, first in the field of cellular automata and then in the general field of any computable function f from N to N. We prove that, through a robust definition of what means "to be unable to compute the nth step without having to follow the same path than simulating the automaton or the function", this implies genuinely, as intuitively expected, that if the behavior of an object is computationally irreducible, no computation of its nth state can be faster than the simulation itself.Lire moins >
Lire la suite >We explore several concepts for analyzing the intuitive notion of computational irreducibility and we propose a robust formal definition, first in the field of cellular automata and then in the general field of any computable function f from N to N. We prove that, through a robust definition of what means "to be unable to compute the nth step without having to follow the same path than simulating the automaton or the function", this implies genuinely, as intuitively expected, that if the behavior of an object is computationally irreducible, no computation of its nth state can be faster than the simulation itself.Lire moins >
Langue :
Anglais
Audience :
Non spécifiée
Vulgarisation :
Non
Collections :
Source :