Multi-objective optimization using ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Multi-objective optimization using metaheuristics: non-standard algorithms
Auteur(s) :
Talbi, El-Ghazali [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Basseur, Matthieu [Auteur]
Laboratoire d'Etudes et de Recherche en Informatique d'Angers [LERIA]
Nebro, Antonio Jesús [Auteur]
Computer Science Department of University of Malaga
Alba, Enrique [Auteur]
Departamento Lenguajes y Ciencias de la Computación [LCC]

Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Basseur, Matthieu [Auteur]
Laboratoire d'Etudes et de Recherche en Informatique d'Angers [LERIA]
Nebro, Antonio Jesús [Auteur]
Computer Science Department of University of Malaga
Alba, Enrique [Auteur]
Departamento Lenguajes y Ciencias de la Computación [LCC]
Titre de la revue :
International Transactions in Operational Research
Pagination :
283-306
Éditeur :
Wiley
Date de publication :
2012
ISSN :
0969-6016
Discipline(s) HAL :
Computer Science [cs]/Operations Research [math.OC]
Résumé en anglais : [en]
In recent years, the application of metaheuristic techniques to solve multi‐objective optimization problems has become an active research area. Solving this kind of problems involves obtaining a set of Pareto‐optimal ...
Lire la suite >In recent years, the application of metaheuristic techniques to solve multi‐objective optimization problems has become an active research area. Solving this kind of problems involves obtaining a set of Pareto‐optimal solutions in such a way that the corresponding Pareto front fulfils the requirements of convergence to the true Pareto front and uniform diversity. Most of the studies on metaheuristics for multi‐objective optimization are focused on Evolutionary Algorithms, and some of the state‐of‐the‐art techniques belong this class of algorithms. Our goal in this paper is to study open research lines related to metaheuristics but focusing on less explored areas to provide new perspectives to those researchers interested in multi‐objective optimization. In particular, we focus on non‐evolutionary metaheuristics, hybrid multi‐objective metaheuristics, parallel multi‐objective optimization and multi‐objective optimization under uncertainty. We analyze these issues and discuss open research lines.Lire moins >
Lire la suite >In recent years, the application of metaheuristic techniques to solve multi‐objective optimization problems has become an active research area. Solving this kind of problems involves obtaining a set of Pareto‐optimal solutions in such a way that the corresponding Pareto front fulfils the requirements of convergence to the true Pareto front and uniform diversity. Most of the studies on metaheuristics for multi‐objective optimization are focused on Evolutionary Algorithms, and some of the state‐of‐the‐art techniques belong this class of algorithms. Our goal in this paper is to study open research lines related to metaheuristics but focusing on less explored areas to provide new perspectives to those researchers interested in multi‐objective optimization. In particular, we focus on non‐evolutionary metaheuristics, hybrid multi‐objective metaheuristics, parallel multi‐objective optimization and multi‐objective optimization under uncertainty. We analyze these issues and discuss open research lines.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- http://www.lcc.uma.es/~eat/pdf/itor2012.pdf
- Accès libre
- Accéder au document
- itor2012.pdf
- Accès libre
- Accéder au document