• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Energy-aware Multi-start Local Search ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
An Energy-aware Multi-start Local Search Heuristic for Scheduling VMs on the OpenNebula Cloud Distribution
Author(s) :
Kessaci, Yacine [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Nouredine, Melab [Auteur]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Talbi, El-Ghazali [Auteur] refId
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Conference title :
HPCS 2012
City :
Madrid
Country :
Espagne
Start date of the conference :
2012-07-02
Publication date :
2012-07-02
English keyword(s) :
local search
energy-aware scheduling
cloud distribution
cloud computing
resource allocation
OpenNebula
multi-start
local search.
HAL domain(s) :
Informatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
English abstract : [en]
Reducing energy consumption is an increasingly important issue in cloud computing, more specifically when dealing with a cloud distribution dispatched over a huge number of machines. Minimizing energy consumption can ...
Show more >
Reducing energy consumption is an increasingly important issue in cloud computing, more specifically when dealing with a cloud distribution dispatched over a huge number of machines. Minimizing energy consumption can significantly reduce the amount of energy bills, and the greenhouse gas emissions. Therefore, many researches are carried out to develop new methods in order to consume less energy. In this paper, we present an Energy-aware Multi-start Local Search algorithm for an OpenNebula based Cloud (EMLS-ONC) that optimizes the energy consumption of an OpenNebula managed geographically distributed cloud computing infrastructure. The results of our EMLS-ONC scheduler are compared to the results obtained by the default scheduler of OpenNebula. The two approaches have been experimented using different (VMs) arrival scenarios and different hardware infrastructures. The results show that EMLS-ONC outperforms the previous OpenNebula's scheduler by a significant margin in terms of energy consumption. In addition, EMLS-ONC is also proved to schedule more applications.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-00749055/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-00749055/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017