• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Pareto-based Metaheuristic for Scheduling ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
DOI :
10.1007/s10586-012-0210-2
Title :
A Pareto-based Metaheuristic for Scheduling HPC Applications on a Geographically Distributed Cloud Federation
Author(s) :
Kessaci, Yacine [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Nouredine, Melab [Auteur]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Talbi, El-Ghazali [Auteur] refId
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Journal title :
Cluster Computing
Pages :
451–468
Publisher :
Springer Verlag
Publication date :
2012-05-02
ISSN :
1386-7857
English keyword(s) :
scheduling
cloud computing
green computing
resource allocation
multi-objective opti- mization
genetic algorithm
HAL domain(s) :
Informatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
English abstract : [en]
Reducing energy consumption is an increasingly important issue in cloud computing, more specif- ically when dealing with High Performance Comput- ing (HPC). Minimizing energy consumption can signif- icantly reduce the ...
Show more >
Reducing energy consumption is an increasingly important issue in cloud computing, more specif- ically when dealing with High Performance Comput- ing (HPC). Minimizing energy consumption can signif- icantly reduce the amount of energy bills and then in- crease the provider's profit. In addition, the reduction of energy decreases greenhouse gas emissions. Therefore, many researches are carried out to develop new methods in order to make HPC applications consuming less energy. In this paper, we present a multi-objective genetic algorithm (MO-GA) that optimizes the energy consumption, CO2 emissions and the generated profit of a geographically distributed cloud computing infrastructure. We also propose a greedy heuristic that aims to maximize the number of scheduled applications in order to compare it with the MO-GA. The two approaches have been experimented using realistic workload traces from Feitelson's PWA Parallel Workload Archive. The results show that MO-GA outperforms the greedy heuristic by a significant margin in terms of energy consumption and CO2 emissions. In addition, MO-GA is also proved to be slightly better in terms of profit while scheduling more applications.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-00749048/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-00749048/document
  • Open access
  • Access the document
Thumbnail
  • Kessaci_ClusterJournal.pdf
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • Kessaci_ClusterJournal.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017