• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Virtual Super Resolution of Scale Invariant ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
Title :
Virtual Super Resolution of Scale Invariant Textured Images Using Multifractal Stochastic Processes
Author(s) :
Chainais, Pierre [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Laboratoire d'Informatique, de Modélisation et d'optimisation des Systèmes [LIMOS]
Centrale Lille
Koenig, Emilie [Auteur]
Laboratoire d'Informatique, de Modélisation et d'optimisation des Systèmes [LIMOS]
Delouille, Véronique [Auteur]
Royal Observatory of Belgium [Brussels] [ROB]
Hochedez, Jean-François [Auteur]
HELIOS - LATMOS
Royal Observatory of Belgium [Brussels] [ROB]
Journal title :
Journal of Mathematical Imaging and Vision
Pages :
28-44
Publisher :
Springer Verlag
Publication date :
2011
ISSN :
0924-9907
English keyword(s) :
Natural images
Scale invariance
Multifractal analysis
Extrapolation
Enhancement
Infinitely divisible cascades
HAL domain(s) :
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Informatique [cs]/Traitement du signal et de l'image [eess.SP]
Planète et Univers [physics]/Astrophysique [astro-ph]/Astrophysique stellaire et solaire [astro-ph.SR]
Physique [physics]/Astrophysique [astro-ph]/Astrophysique stellaire et solaire [astro-ph.SR]
English abstract : [en]
We present a new method of magnification for textured images featuring scale invariance properties. This work is originally motivated by an application to astronomical images. One goal is to propose a method to quantitatively ...
Show more >
We present a new method of magnification for textured images featuring scale invariance properties. This work is originally motivated by an application to astronomical images. One goal is to propose a method to quantitatively predict statistical and visual properties of images taken by a forthcoming higher resolution telescope from older images at lower resolution. This is done by performing a virtual super resolution using a family of scale invariant stochastic processes, namely compound Poisson cascades, and fractional integration. The procedure preserves the visual aspect as well as the statistical properties of the initial image. An augmentation of information is performed by locally adding random small scale details below the initial pixel size. This extrapolation procedure yields a potentially infinite number of magnified versions of an image. It allows for large magnification factors (virtually infinite) and is physically conservative: zooming out to the initial resolution yields the initial image back. The (virtually) super resolved images can be used to predict the quality of future observations as well as to develop and test compression or denoising techniques.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-00707631/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-00707631/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-00707631/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-00707631/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017