• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning Boundary Edges for 3D-Mesh Segmentation
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
10.1111/j.1467-8659.2011.01967.x
Title :
Learning Boundary Edges for 3D-Mesh Segmentation
Author(s) :
Benhabiles, Halim [Auteur] refId
Geometry Processing and Constrained Optimization [M2DisCo]
FOX MIIRE [LIFL]
Lavoué, Guillaume [Auteur]
Geometry Processing and Constrained Optimization [M2DisCo]
Vandeborre, Jean Philippe [Auteur correspondant] refId
FOX MIIRE [LIFL]
Institut TELECOM/TELECOM Lille1
Daoudi, Mohamed [Auteur] refId
FOX MIIRE [LIFL]
Institut TELECOM/TELECOM Lille1
Journal title :
Computer Graphics Forum
Pages :
2170-2182
Publisher :
Wiley
Publication date :
2011-12
ISSN :
0167-7055
English keyword(s) :
3D-mesh
segmentation
learning
boundary edges
evaluation
ground-truth
HAL domain(s) :
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
Informatique [cs]/Multimédia [cs.MM]
English abstract : [en]
This paper presents a 3D-mesh segmentation algorithm based on a learning approach. A large database of manually segmented 3D-meshes is used to learn a boundary edge function. The function is learned using a classifier which ...
Show more >
This paper presents a 3D-mesh segmentation algorithm based on a learning approach. A large database of manually segmented 3D-meshes is used to learn a boundary edge function. The function is learned using a classifier which automatically selects from a pool of geometric features the most relevant ones to detect candidate boundary edges. We propose a processing pipeline that produces smooth closed boundaries using this edge function. This pipeline successively selects a set of candidate boundary contours, closes them and optimizes them using a snake movement. Our algorithm was evaluated quantitatively using two different segmentation benchmarks and was shown to outperform most recent algorithms from the state-of-the-art.Show less >
Language :
Anglais
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-00660740/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-00660740/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-00660740/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-00660740/document
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • CGF-2011-benhabiles-final.pdf
  • Open access
  • Access the document
Thumbnail
  • CGF-2011-benhabiles-final.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017