• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Error analysis of Jacobi derivative ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1007/s11075-011-9447-8
Title :
Error analysis of Jacobi derivative estimators for noisy signals
Author(s) :
Liu, Da-Yan [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Laboratoire Paul Painlevé [LPP]
Laboratoire d'Automatique, Génie Informatique et Signal [LAGIS]
Gibaru, Olivier [Auteur]
Laboratoire de Métrologie et de Mathématiques Appliquées [L2MA]
Non-Asymptotic estimation for online systems [NON-A]
Perruquetti, Wilfrid [Auteur]
Systèmes Non Linéaires et à Retards [SyNeR]
Non-Asymptotic estimation for online systems [NON-A]
Journal title :
Numerical Algorithms
Pages :
53-83
Publisher :
Springer Verlag
Publication date :
2011-02-22
ISSN :
1017-1398
English keyword(s) :
Numerical differentiation
Jacobi orthogonal polynomials
Stochastic process
Stochastic integrals
Error bound
HAL domain(s) :
Mathématiques [math]/Analyse numérique [math.NA]
English abstract : [en]
Recent algebraic parametric estimation techniques (see \cite{garnier,mfhsr}) led to point-wise derivative estimates by using only the iterated integral of a noisy observation signal (see \cite{num0,num}). In this paper, ...
Show more >
Recent algebraic parametric estimation techniques (see \cite{garnier,mfhsr}) led to point-wise derivative estimates by using only the iterated integral of a noisy observation signal (see \cite{num0,num}). In this paper, we extend such differentiation methods by providing a larger choice of parameters in these integrals: they can be reals. For this, %as in \cite{num0,num}, the extension is done via a truncated Jacobi orthogonal series expansion. Then, the noise error contribution of these derivative estimations is investigated: after proving the existence of such integral with a stochastic process noise, their statistical properties (mean value, variance and covariance) are analyzed. In particular, the following important results are obtained: \begin{description} \item[$a)$] the bias error term, due to the truncation, can be reduced by tuning the parameters, \item[$b)$] such estimators can cope with a large class of noises for which the mean and covariance are polynomials in time (with degree smaller than the order of derivative to be estimated), \item[$c)$] the variance of the noise error is shown to be smaller in the case of negative real parameters than it was in \cite{num0,num} for integer values. \end{description} Consequently, these derivative estimations can be improved by tuning the parameters according to the here obtained knowledge of the parameters' influence on the error bounds.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/inria-00573270/document
  • Open access
  • Access the document
Thumbnail
  • http://arxiv.org/pdf/1103.0652
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/inria-00573270/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/inria-00573270/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/inria-00573270/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017