• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A software framework based on a conceptual ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1016/j.ejor.2010.07.023
Title :
A software framework based on a conceptual unified model for evolutionary multiobjective optimization: ParadisEO-MOEO
Author(s) :
Liefooghe, Arnaud [Auteur] refId
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Jourdan, Laetitia [Auteur] refId
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Talbi, El-Ghazali [Auteur] refId
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Journal title :
European Journal of Operational Research
Pages :
104-112
Publisher :
Elsevier
Publication date :
2011
ISSN :
0377-2217
English keyword(s) :
Multiple objective programming
Evolutionary algorithms
Conceptual unified model
Algorithm design and implementation
Software framework
HAL domain(s) :
Informatique [cs]/Recherche opérationnelle [cs.RO]
English abstract : [en]
This paper presents a general-purpose software framework dedicated to the design and the implementation of evolutionary multiobjective optimization techniques: ParadisEO-MOEO. A concise overview of evolutionary algorithms ...
Show more >
This paper presents a general-purpose software framework dedicated to the design and the implementation of evolutionary multiobjective optimization techniques: ParadisEO-MOEO. A concise overview of evolutionary algorithms for multiobjective optimization is given. A substantial number of methods has been proposed so far, and an attempt of conceptually unifying existing approaches is presented here. Based on a fine-grained decomposition and following the main issues of fitness assignment, diversity preservation and elitism, a conceptual model is proposed and is validated by regarding a number of state-of-the-art algorithms as simple variants of the same structure. This model is then incorporated into the ParadisEO-MOEO software framework. This framework has proven its validity and high flexibility by enabling the resolution of many academic, real-world and hard multiobjective optimization problems.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-00522612/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-00522612/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017