Sur l'hybridation des métaheuristiques ...
Document type :
Pré-publication ou Document de travail
Title :
Sur l'hybridation des métaheuristiques Algorithmes Génétiques et Recherche Tabou pour la résolution de problèmes d'ordonnancement en industries agroalimentaires
Author(s) :
Karray, Asma [Auteur]
Laboratoire d'Automatique, Génie Informatique et Signal [LAGIS]
Laboratoire d'Automatique [Tunis] [LR-Automatique-ENIT]
Benrejeb, Mohamed [Auteur]
Laboratoire d'Automatique [Tunis] [LR-Automatique-ENIT]
Borne, Pierre [Auteur]
LAGIS-OSL
Laboratoire d'Automatique, Génie Informatique et Signal [LAGIS]
Laboratoire d'Automatique [Tunis] [LR-Automatique-ENIT]
Benrejeb, Mohamed [Auteur]
Laboratoire d'Automatique [Tunis] [LR-Automatique-ENIT]
Borne, Pierre [Auteur]
LAGIS-OSL
Keyword(s) :
Ordonnancement
industries agroalimentaires
hybridation
métaheuristique
Algorithmes Génétiques
Recherche Tabou
industries agroalimentaires
hybridation
métaheuristique
Algorithmes Génétiques
Recherche Tabou
HAL domain(s) :
Informatique [cs]/Automatique
English abstract : [en]
this paper investigates the single-machine scheduling problems in agro-food industries. This problem is strongly NP-hard and metaheuristics are known for theirs adaptability to this kind of problems. In this paper, we ...
Show more >this paper investigates the single-machine scheduling problems in agro-food industries. This problem is strongly NP-hard and metaheuristics are known for theirs adaptability to this kind of problems. In this paper, we propose new approache based on Genetic Algorithms and Tabu Search to resolve the single-machine scheduling problems. Computational experiments on benchmark data sets show that the proposed approache reach better solutions in short computational times. Furthermore, they require few user-defined parametersShow less >
Show more >this paper investigates the single-machine scheduling problems in agro-food industries. This problem is strongly NP-hard and metaheuristics are known for theirs adaptability to this kind of problems. In this paper, we propose new approache based on Genetic Algorithms and Tabu Search to resolve the single-machine scheduling problems. Computational experiments on benchmark data sets show that the proposed approache reach better solutions in short computational times. Furthermore, they require few user-defined parametersShow less >
Language :
Français
Collections :
Source :
Files
- https://hal.archives-ouvertes.fr/hal-00516943/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-00516943/document
- Open access
- Access the document