About the Lyapunov exponent of sampled-data ...
Type de document :
Communication dans un congrès avec actes
Titre :
About the Lyapunov exponent of sampled-data systems with non-uniform sampling
Auteur(s) :
HETEL, Laurentiu [Auteur]
Laboratoire d'Automatique, Génie Informatique et Signal [LAGIS]
Kruszewski, Alexandre [Auteur]
Laboratoire d'Automatique, Génie Informatique et Signal [LAGIS]
Richard, Jean-Pierre [Auteur]
Algebra for Digital Identification and Estimation [ALIEN]
Systèmes Non Linéaires et à Retards [SyNeR]

Laboratoire d'Automatique, Génie Informatique et Signal [LAGIS]
Kruszewski, Alexandre [Auteur]
Laboratoire d'Automatique, Génie Informatique et Signal [LAGIS]
Richard, Jean-Pierre [Auteur]
Algebra for Digital Identification and Estimation [ALIEN]
Systèmes Non Linéaires et à Retards [SyNeR]
Titre de la manifestation scientifique :
TDS'09, 8th IFAC Workshop on Time Delay Systems
Ville :
Sinaia
Pays :
Roumanie
Date de début de la manifestation scientifique :
2009-09-01
Date de publication :
2009-09
Discipline(s) HAL :
Informatique [cs]/Automatique
Résumé en anglais : [en]
In this paper we propose a method for evaluating the Lyapunov exponent of sampled-data systems with sampling jitter. We consider the case of systems in which the sampling interval is unknown, time-varying and bounded in a ...
Lire la suite >In this paper we propose a method for evaluating the Lyapunov exponent of sampled-data systems with sampling jitter. We consider the case of systems in which the sampling interval is unknown, time-varying and bounded in a given interval. In order to take into account the inter-sampling behaviour of the system, the problem is addressed from the continuous time point of view. The approach exploits the fact that the command is a piecewise constant signal and leads to less conservative stability conditions. Using geometrical arguments, a lower bound of the Lyapunov exponent can be expressed as a generalized eigenvalue problem. Numerical examples are given to illustrate the approach.Lire moins >
Lire la suite >In this paper we propose a method for evaluating the Lyapunov exponent of sampled-data systems with sampling jitter. We consider the case of systems in which the sampling interval is unknown, time-varying and bounded in a given interval. In order to take into account the inter-sampling behaviour of the system, the problem is addressed from the continuous time point of view. The approach exploits the fact that the command is a piecewise constant signal and leads to less conservative stability conditions. Using geometrical arguments, a lower bound of the Lyapunov exponent can be expressed as a generalized eigenvalue problem. Numerical examples are given to illustrate the approach.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :