• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Radio Network Distributed Algorithms in ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Rapport de recherche
Title :
Radio Network Distributed Algorithms in the Unknown Neighborhood Model
Author(s) :
Derbel, Bilel [Auteur] refId
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Talbi, El-Ghazali [Auteur] refId
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Institution :
INRIA
Publication date :
2008
English keyword(s) :
Distributed algorithms
time complexity
Radio networks.
Radio networks
HAL domain(s) :
Informatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
Informatique [cs]/Réseaux et télécommunications [cs.NI]
Informatique [cs]/Informatique ubiquitaire
English abstract : [en]
The paper deals with radio network distributed algorithms where nodes are not aware of their one hop neighborhood. Given an n-node graph modeling a multihop network of radio devices, we give a O(log^2 n) time distributed ...
Show more >
The paper deals with radio network distributed algorithms where nodes are not aware of their one hop neighborhood. Given an n-node graph modeling a multihop network of radio devices, we give a O(log^2 n) time distributed algorithm that computes w.h.p., a constant approximation value of the degree of each node. We also provide a O( \Delta log n + log^2 n) time distributed algorithm that computes w.h.p., a constant approximation value of the local maximum degree of each node, where the global maximum degree \Delta of the graph is not known. Using our algorithms as a plug-and-play procedure, we show that many existing distributed algorithms requiring the knowledge of to execute efficiently can be run with essentially the same time complexity by using the local maximum degree instead of . In other words, using the local maximum degree is sufficient to break the symmetry in a local and efficient manner. We illustrate this claim by investigating the complexity of some basic problems. First, we investigate the generic problem of simulating any classical message passing algorithm in the radio network model. Then, we study the fundamental edge/node coloring problem in the special case of unit disk graphs. The obtained results show that knowing the local maximum degree allows to coordinate the nodes locally and avoid interferences in radio networks.Show less >
Language :
Anglais
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/inria-00292155v3/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/inria-00292155v3/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/inria-00292155v3/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017