ParadisEO-MOEO: A Framework for Evolutionary ...
Document type :
Communication dans un congrès avec actes
Title :
ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization
Author(s) :
Liefooghe, Arnaud [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Basseur, Matthieu [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Jourdan, Laetitia [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Talbi, El-Ghazali [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]

Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Basseur, Matthieu [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Jourdan, Laetitia [Auteur]

Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Talbi, El-Ghazali [Auteur]

Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Conference title :
Evolutionary Multi-Criterion Optimization (EMO 2007)
City :
Matsushima
Country :
Japon
Start date of the conference :
2007-02
Journal title :
Lecture Notes in Computer Science (LNCS)
Publication date :
2007
HAL domain(s) :
Mathématiques [math]/Combinatoire [math.CO]
English abstract : [en]
This paper presents ParadisEO-MOEO, a white-box object-oriented generic framework dedicated to the flexible design of evolutionary multi-objective algorithms. This paradigm-free software embeds some features and techniques ...
Show more >This paper presents ParadisEO-MOEO, a white-box object-oriented generic framework dedicated to the flexible design of evolutionary multi-objective algorithms. This paradigm-free software embeds some features and techniques for Pareto-based resolution and aims to provide a set of classes allowing to ease and speed up the development of computationally efficient programs. It is based on a clear conceptual distinction between the solution methods and the multi-objective problems they are intended to solve. This separation confers a maximum design and code reuse. ParadisEO-MOEO provides a broad range of archive-related features (such as elitism or performance metrics) and the most common Pareto-based fitness assignment strategies (MOGA, NSGA, SPEA, IBEA and more). Furthermore, parallel and distributed models as well as hybridization mechanisms can be applied to an algorithm designed within ParadisEO-MOEO using the whole version of ParadisEO. In addition, GUIMOO, a platform-independant free software dedicated to results analysis for multi-objective problems, is briefly introduced.Show less >
Show more >This paper presents ParadisEO-MOEO, a white-box object-oriented generic framework dedicated to the flexible design of evolutionary multi-objective algorithms. This paradigm-free software embeds some features and techniques for Pareto-based resolution and aims to provide a set of classes allowing to ease and speed up the development of computationally efficient programs. It is based on a clear conceptual distinction between the solution methods and the multi-objective problems they are intended to solve. This separation confers a maximum design and code reuse. ParadisEO-MOEO provides a broad range of archive-related features (such as elitism or performance metrics) and the most common Pareto-based fitness assignment strategies (MOGA, NSGA, SPEA, IBEA and more). Furthermore, parallel and distributed models as well as hybridization mechanisms can be applied to an algorithm designed within ParadisEO-MOEO using the whole version of ParadisEO. In addition, GUIMOO, a platform-independant free software dedicated to results analysis for multi-objective problems, is briefly introduced.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- https://hal.inria.fr/inria-00269972/document
- Open access
- Access the document
- http://www.lifl.fr/~jourdan/publi/emoeomo.pdf
- Open access
- Access the document
- https://hal.inria.fr/inria-00269972/document
- Open access
- Access the document
- http://www.lifl.fr/~jourdan/publi/emoeomo.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- 075.pdf
- Open access
- Access the document