• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

ParadisEO-MOEO: A Framework for Evolutionary ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
DOI :
10.1007/978-3-540-70928-2_31
Title :
ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization
Author(s) :
Liefooghe, Arnaud [Auteur] refId
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Basseur, Matthieu [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Jourdan, Laetitia [Auteur] refId
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Talbi, El-Ghazali [Auteur] refId
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Conference title :
Evolutionary Multi-Criterion Optimization (EMO 2007)
City :
Matsushima
Country :
Japon
Start date of the conference :
2007-02
Journal title :
Lecture Notes in Computer Science (LNCS)
Publication date :
2007
HAL domain(s) :
Mathématiques [math]/Combinatoire [math.CO]
English abstract : [en]
This paper presents ParadisEO-MOEO, a white-box object-oriented generic framework dedicated to the flexible design of evolutionary multi-objective algorithms. This paradigm-free software embeds some features and techniques ...
Show more >
This paper presents ParadisEO-MOEO, a white-box object-oriented generic framework dedicated to the flexible design of evolutionary multi-objective algorithms. This paradigm-free software embeds some features and techniques for Pareto-based resolution and aims to provide a set of classes allowing to ease and speed up the development of computationally efficient programs. It is based on a clear conceptual distinction between the solution methods and the multi-objective problems they are intended to solve. This separation confers a maximum design and code reuse. ParadisEO-MOEO provides a broad range of archive-related features (such as elitism or performance metrics) and the most common Pareto-based fitness assignment strategies (MOGA, NSGA, SPEA, IBEA and more). Furthermore, parallel and distributed models as well as hybridization mechanisms can be applied to an algorithm designed within ParadisEO-MOEO using the whole version of ParadisEO. In addition, GUIMOO, a platform-independant free software dedicated to results analysis for multi-objective problems, is briefly introduced.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/inria-00269972/document
  • Open access
  • Access the document
Thumbnail
  • http://www.lifl.fr/~jourdan/publi/emoeomo.pdf
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/inria-00269972/document
  • Open access
  • Access the document
Thumbnail
  • http://www.lifl.fr/~jourdan/publi/emoeomo.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017