• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Road-Matching Method for Precise Vehicle ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
Title :
A Road-Matching Method for Precise Vehicle Localization using Belief Theory and Kalman Filtering
Author(s) :
El Badaoui El Najjar, Maan [Auteur] refId
Systèmes Tolérants aux Fautes [STF]
Bonnifait, Philippe [Auteur]
Journal title :
Autonomous Robots
Publisher :
Springer Verlag
Publication date :
2005
ISSN :
0929-5593
HAL domain(s) :
Informatique [cs]/Automatique
Informatique [cs]/Robotique [cs.RO]
English abstract : [en]
This paper describes a novel road-matching method designed to support the real-time navigational function of cars for advanced systems applications in the area of driving assistance. This method provides an accurate ...
Show more >
This paper describes a novel road-matching method designed to support the real-time navigational function of cars for advanced systems applications in the area of driving assistance. This method provides an accurate estimation of position for a vehicle relative to a digital road map using Belief Theory and Kalman filtering. Firstly, an Extended Kalman Filter combines the DGPS and ABS sensor measurements to produce an approximation of the vehicle's pose, which is then used to select the most likely segment from the database. The selection strategy merges several criteria based on distance, direction and velocity measurements using Belief Theory. A new observation is then built using the selected segment, and the approximate pose adjusted in a second Kalman filter estimation stage. The particular attention given to the modeling of the system showed that incrementing the state by the bias (also called absolute error) of the map significantly increases the performance of the method. Real experimental results show that this approach, if correctly initialized, is able to work over a substantial period without GPS.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Université de Lille

Mentions légales
Université de Lille © 2017